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Abstract
Different ground-motion intensity measures capture unique aspects of seismic motion, all 
of which play vital roles in probability seismic hazard analysis (PSHA), depending on the 
objectives under consideration and the design or analysis methods employed. Within the 
current PSHA framework, performing probability assessments for multiple intensity mea-
sures to obtain their seismic hazard curves typically requires multiple ground motion pre-
diction equations (GMPEs) for each intensity measure. While GMPEs for some intensity 
measures can be approximated from existing ones through modifications, many still need 
to be developed through regression analyses of extensive earthquake data. However, be-
sides the laborious task of constructing multiple GMPEs, recent studies have also pointed 
out the difficulty in directly constraining the scaling of these intensity measures within 
GMPEs using seismological theory. To address these challenges, this study proposes a 
more efficient, physically reasonable, and internally consistent framework for probabi-
listically analyzing multiple intensity measures. Firstly, to avoid the effort of construct-
ing multiple GMPEs, this study exclusively adopts the GMPE of the Fourier amplitude 
spectrum (FAS) coupled with a ground-motion duration model. Subsequently, multiple 
intensity measures are simultaneously estimated based on theoretical relationships be-
tween FAS with each intensity measure. In addition, given that Fourier spectra are more 
closely related to the physics of wave propagation, the scaling of FAS in GMPE is easier 
to constrain using seismological theory. Furthermore, the moment method, in conjunction 
with Latin hypercube sampling, is applied to calculate the exceedance probability for 
each intensity measure, thereby obtaining corresponding seismic hazard curves. Finally, a 
numerical example was conducted to verify the proposed framework.

Keywords Multiple ground-motion intensity measures · Probabilistic seismic hazard 
analysis · Fourier amplitude spectrum · Moment method · Latin hypercube sampling
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1 Introduction

Probabilistic seismic hazard analysis (PSHA) remains a useful tool to forecast the poten-
tially destructive impact of earthquakes, thereby facilitating disaster prevention and mitiga-
tion efforts (Tselentis and Danciu 2010; Tselentis et al. 2010; Allen et al. 2020). An essential 
consideration in conducting PSHA involves selecting appropriate ground-motion intensity 
measures. Different intensity measures capture unique aspects of seismic motion, all of 
which play vital roles in PSHA, depending on the objectives under consideration and the 
design or analysis methods employed. The most commonly used intensity measures involve 
peak ground motions such as peak ground acceleration (PGA) and peak ground velocity 
(PGV), as well as pseudo-spectral acceleration (PSA). These measures offer simplicity and 
convenience in characterizing ground vibration, and their results derived from PSHA have 
found extensive use in seismic designs (AIJ 2015; ASCE/SEI 7–22 2022; Standards Austra-
lia 2007) as well as various other applications (Walker 2008; AIR-Worldwide 2013).

Nevertheless, these intensity measures each still have their limitations. Peak ground 
motions only capture the maximum amplitude value and fail to provide information on fre-
quency content and duration of ground motion, while PSA incorporates frequency content 
but overlooks duration and cyclic loading effect of ground motion. In this regard, the input 
energy spectrum presents advantages as it integrates the amplitude, frequency content, and 
duration of ground motion (Kuwamura and Galambos 1989; Zhang et al. 2023a, b). The 
input energy spectrum, commonly expressed as the equivalent input energy velocity, Veq, 
has also been utilized in PSHA (Chapman 1999; Tselentis et al. 2010; Zhang et al. 2024b) 
and has found application in energy-based seismic design (BSL 2005) in recent decades. 
Additionally, another intensity measure, Arias intensity, Ia, which is calculated as the inte-
gral of the square of the acceleration-time history, holds significant relevance in geotechni-
cal domains (Reed and Kassawara 1990). Arias intensity Ia, reflecting the cumulative energy 
in seismic signals, demonstrates a strong correlation with Newmark’s displacement and 
emerges as an effective intensity measure for assessing earthquake-induced landslide and 
liquefaction potential (Travasarou et al. 2003).

When aiming to generate seismic hazard curves and maps for these intensity measures to 
meet various applications, it is necessary to probabilistically analyze these intensity measures 
considering associated uncertainties in earthquakes. Within the current PSHA framework, 
this typically needs the following main components (Tselentis and Danciu 2010; Tselentis 
et al. 2010). Before conducting the analysis, all seismic faults/zones capable of producing 
damaging ground motions are identified, and their recurrence, magnitude, and distance dis-
tributions are evaluated. Then, the ground-motion prediction equations (GMPEs) for each 
intensity measure are selected to estimate these intensity measures at the sites of interest. 
Finally, seismic hazard curves for each intensity measure are calculated considering all the 
seismic faults/zones. It is noted that to probabilistically analyze multiple intensity measures 
and obtain their hazard curves, multiple GMPEs for each intensity measure are necessary. 
While GMPEs for some intensity measures can be approximated from existing ones through 
modifications, many still need to be developed via regression analyses of extensive earth-
quake data.

Although numerous GMPEs are available for some intensity measures like PGA and 
PSA in many regions worldwide (Douglas 2024), there is still a relatively limited num-
ber of GMPEs for other intensity measures in many regions, such as the equivalent input 
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energy velocity Veq (Chapman 1999; Chou and Uang 2000; Cheng et al. 20142020; Alıcı 
and Sucuoğlu 20162018) and Arias intensity Ia (Travasarou et al. 2003). Additionally, since 
the characteristics of source, path, and site effects are systematically different in different 
regions, using GMPEs from other regions often leads to inaccurate estimations of ground 
motion (Bora et al. 2014; Lavrentiadis and Abrahamson 2023). Besides the efforts needed 
for constructing multiple GMPEs, there is another, more important challenge in developing 
GMPEs for multiple intensity measures. Bora et al. (2016) discovered that high-frequency 
PSA is influenced by a broad frequency range of ground motion and does not adhere to the 
linear system theory. Stafford et al. (2016) and Zhang and Zhao (2021b) further noted that 
site response for PSA is also nonlinear and depends on the frequency content of the input 
motion, even for linear soils (soil behavior at small strain). Therefore, many recent stud-
ies (Bora et al. 2014; Bayless and Abrahamson 2019) have emphasized the difficulty in 
directly constraining the scaling of PSA within GMPEs using seismological theory. More-
over Zhang et al. (2023b) found that site response for Veq is also nonlinear and depends on 
the frequency content of the input motion, even for linear soils. Actually, the limitations 
of PSA are likely to extend to other intensity measures, including peak ground motions, 
equivalent input energy velocity Veq, and Arias intensity Ia, due to their dependence on a 
broad frequency range of ground motion, as detailed in Section 3.

To address these challenges, this study proposes a more efficient, physically reasonable, 
and internally consistent framework for probabilistically analyzing multiple intensity mea-
sures. To avoid the laborious task of constructing multiple GMPEs, this study exclusively 
adopts the GMPE of Fourier amplitude spectrum (FAS) coupled with a ground-motion dura-
tion model. Subsequently, multiple intensity measures are simultaneously estimated based 
on theoretical relationships between FAS with each intensity measure. In addition, given 
that Fourier spectra are more closely related to the physics of wave propagation, the scal-
ing of FAS in GMPEs is easier to constrain using seismological theory. Furthermore, the 
moment method, in conjunction with Latin hypercube sampling, is applied to calculate the 
exceedance probability for each intensity measure, thereby obtaining corresponding seismic 
hazard curves. The rest of the paper is organized as follows. Section 2 reviews the approach 
for probabilistically assessing multiple intensity measures in the current PSHA framework. 
Section 3 presents the approach for estimating multiple intensity measures from FAS, based 
on theoretical relationships between FAS and each intensity measure. Section 4 presents 
the approach for calculating the exceedance probability and seismic hazard curves for each 
intensity measure. Section 5 conducts a numerical example to verify the proposed frame-
work. Lastly, Section 6 summarizes the conclusions.

2 Probabilistic assessment of multiple intensity measures in the 
current PSHA framework

This section briefly reviews the approach for probabilistically assessing multiple intensity 
measures and deriving their seismic hazard curves within the current PSHA framework. 
Before conducting the assessment, all seismic faults/zones capable of producing damaging 
ground motions are identified, and their recurrence, magnitude, and distance distributions 
are evaluated. Then, GMPEs for each intensity measure are selected to estimate these inten-
sity measures at the sites of interest. Finally, the exceedance probabilities for multiple inten-
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sity measures and their corresponding seismic hazard curves are calculated by considering 
all the seismic faults/zones. The probability that an intensity measure (IM) exceeds a speci-
fied intensity value, im, during a specified period t (years), P(IM > im, t), can be estimated 
by the following equation, 

 
P(IM >im, t)= 1−

m∏
k=1

[1−Pk(IM >im, t)] (1)

where, k refers to the kth earthquake originating from a seismic fault or seismic zone, m 
represents the number of seismic faults or zones considered capable of producing damaging 
ground motions, and Pk(IM > im, t) is the exceedance probability calculated only consider-
ing the kth earthquake. If the occurrence of seismic events is assumed to follow a homog-
enous stochastic Poisson process, Pk(IM > im, t) can be expressed as, 

 Pk(IM >im, t) = 1−e−pkvkt (2)

Here, νk is the mean annual rate of the kth seismic fault or zone, pk is the exceedance prob-
ability of the kth earthquake given the occurrence of the earthquake, which is expressed as, 

 
pk(IM >im) = ∫

R
∫

M
P ( IM >im| m, r) fM (m)fR(r)dmdr (3)

where, fM(m) represents the probability density function (PDF) of the magnitude occur-
ring in the source; fR(r) is the PDF that describes the distribution of distance due to the 
spatial distribution of potential hypocenter locations within the seismic faults or zones. 
P(IM > im∣m, r) is the probability that the intensity IM exceeds a specified value im, given 
a magnitude m and a distance r. P(IM > im∣m, r) is commonly estimated using a GMPE, 
assuming that the natural logarithm of the IM for given a magnitude and a distance follows 
a normal distribution. Therefore, to calculate the probability P(IM > im∣m, r) for multiple 
intensity measures, multiple GMPEs for each intensity measure are necessary. Figure 1 (a) 
depicts the schematic diagram for analyzing multiple intensity measures within the current 
PSHA framework.

3 Estimation of multiple intensity measures

3.1 Basic concept of the proposed framework

To avoid the laborious task of constructing multiple GMPEs, it would be ideal to use a 
single intensity measure that has dependent relationships with other intensity measures. 
Such that, the GMPE for only one intensity measure needs to be developed, and other inten-
sity measures can be immediately obtained through their respective relationships. Addi-
tionally, deriving the desired intensity measures from a central GMPE ensures internal 
consistency among these intensity measures. Many previous studies (Boore 2003; Zhang 
and Zhao 20202021a2022; Zhang et al. 2023a, b; Zhao et al. 2023; Zhang et al. 2024a, 
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b) have found that the FAS have dependent relationships with many intensity measures. 
In addition, regarding the difficulty in directly constraining the scaling of multiple inten-
sity measures within GMPEs using seismological theory, many studies (e.g. Bora et al. 
2014; Bayless and Abrahamson 2019) have highlighted that since Fourier spectra are more 
closely related to the physics of wave propagation, the scaling of FAS in GMPEs is easier 
to constrain using seismological theory. Therefore, this study exclusively adopts the GMPE 
of FAS coupled with a ground-motion duration model. Subsequently, multiple intensity 
measures are simultaneously estimated based on theoretical relationships between FAS 
with each intensity measure. Furthermore, the moment method, in conjunction with Latin 
hypercube sampling, is applied to calculate the exceedance probability for each intensity 
measure, thereby obtaining corresponding seismic hazard curves, which will be detailed in 
Section 4. Figure 1 (b) depicts the schematic diagram of the proposed framework for analyz-
ing multiple intensity measures. The basic idea of the proposed framework can be clearly 
understood by comparing Fig. 1 (a) and 1 (b).

3.2 Multiple intensity measures from Fourier amplitude spectrum

Intensity measures including PGA, PGV, and PSA can be estimated from FAS based on 
random vibration theory (RVT) using the following equation (Boore 2003), 

 
IM = pf

√
1

Dπ

∞
∫
0

|Y (ω) × I(ω)|2dω (4)

where, ω is the circular frequency of the ground motion, Y(ω) is the acceleration FAS of 
the ground motion, pf represents the peak factor, and D represents the duration (details 

Fig. 1 Schematic diagrams of (a) the current PSHA framework and (b) the proposed framework for ana-
lyzing multiple intensity measures
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presented subsequently). I(ω) is a filter that depends on the type of intensity measure being 
estimated. When Eq. (4) is applied to estimate the peak ground motions, the filter I(ω) is 
expressed as follows: 

 I(ω) = ωn (5)

where n = 0 and − 1 for PGA and PGV, respectively. When Eq. (4) is applied to estimate the 
PSA, the filter I(ω) is expressed as follows: 

 

I(ω) = 1√
(2ξω/ω̄)2+((ω/ω̄)2−1)2  (6)

where ω̄ and ξ are the circular frequency and damping ratio of the single-degree-of-freedom 
(SDOF) oscillator, respectively.

Many peak-factor models have been developed for RVT analyses (Cartwright and 
Longuet-Higgins 1956; Davenport 1964; Vanmarcke 1975). Although the Cartwright and 
Longuet-Higgins (CL) (1956) model has been commonly applied in engineering seismol-
ogy and site response analyses, the Vanmarcke model (1975) can give better estimations of 
the peak factor (Wang and Rathje 2016). This is because the Vanmarcke model accounts for 
the dependence between peaks, which is particularly significant for the narrowband oscilla-
tor response, whereas the CL model does not. The cumulative distribution function (CDF) 
of the peak factor pf provided by Vanmarcke (1975) is expressed as follows: 

 
P (pf < r) = [1−e(−r2/2)] × exp[−2fze(−r2/2)Dgm

(1−e−δ1.2r
√

π/2)
(1−er2/2)

] (7)

Here, Dgm represents the ground-motion duration, and δ is a bandwidth factor that is defined 
as a function of the spectral moments, 

 
δ =

√
1− m2

1
m0m2

 (8)

where, m0, m1, and m2 denote the zeroth-, first-, and second-order moments of the square of 
the FAS. It should be noted that the spectral moments should be calculated according to the 
intensity measures being estimated. To estimate the PGA and PGV, the FAS of acceleration 
and velocity of the ground motion should be used, respectively. To estimate PSA, oscillator-
response FAS should be used accordingly. Therefore, the nth-order spectral moment, mn, 
can be expressed as: 

 
mn = 1

π
∫∞

0 ωn(Y (ω) × I(ω))2dω (9)

In addition, fz denotes the rate of zero crossings that is also a function of the spectral 
moments, and is given by 
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fz = 1

2π

√
m2

m0
 (10)

In RVT analyses, the expected value of pf is typically used. According to Eq. (7), the 

expected value of pf is calculated by 
∞
∫
0

[1 − P (pf<r)]dr.

The duration D also depends on the intensity measures being estimated. When Eq. (4) is 
applied to estimate the peak ground motions, D is equal to the ground-motion duration Dgm. 
When Eq. (4) is applied to estimate PSA, D is equal to the root-mean-square (rms) duration 
of the oscillator response, Drms. Boore and Joyner (1984) and Liu and Pezeshk (1999) devel-
oped simple formulas to calculate the rms duration Drms from Dgm. Boore and Thompson 
(2015) then developed a more accurate formula for Drms as, 

 

Drms

Dgm
= (ce1+ce2

1−ηce3

1+ηce3
)[1+ ce4

2πξ
( η

1+ce5ηce6
)ce7 ] (11)

Here, η =T0/Dgm, T0 is the SDOF oscillator period, and ce1–ce7 are coefficients that depend 
on the moment magnitude M and distance R, as noted in Boore and Thompson (2015).

In addition, Arias intensity Ia can be obtained from FAS by (Boore 2003), 

 
Ia = π

2g
m0 (12)

where g is gravitational acceleration and m0 represents the zeroth-order moment of the 
square of the ground-motion acceleration FAS.

Moreover, the equivalent input energy velocity Veq can be obtained from FAS by the fol-
lowing equation (Ordaz et al. 2003; Zhang et al. 2023a, b): 

 
Veq(ω̄, ξ) =

√
− 2

π
∫∞

0 |Y (ω)|2Re[Hv(ω̄, ω, ξ)]dω (13)

where Hv(ω̄, ω, ξ) denotes the oscillator transfer function of the ground acceleration to the 
relative velocity, which is a complex number; its real part is expressed as: 

 
Re[Hv(ω̄, ω, ξ)] = − 2ξω̄ω2

(ω̄2−ω2)2+(2ξωω̄)2  (14)

Based on these equations, multiple intensity measures can be estimated from FAS. It is 
noted that to estimate PGA, PGV, and PSA from FAS, the ground motion duration Dgm is 
required. However, to estimate Ia and Veq from FAS, Dgm is unnecessary. Additionally, simi-
lar to PSA, all these intensity measures, including PGA, PGV, Ia, and Veq, are influenced by 
a broad frequency range of ground motion. This is because their calculations all involve the 
integral of FAS throughout the entire frequency domain. Therefore, it can be inferred that 
similar to PSA, all these intensity measures do not follow a linear system theory, and it is 
difficult to directly constrain the scaling of these intensity measures within GMPEs using 
seismological theory.
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3.3 Comparison with time-series analysis

To demonstrate the accuracy of the equations presented in Section 3, the results for PGA, 
PGV, PSA, Veq, and Ia, estimated from the FAS using these equations, were compared with 
those obtained through traditional time-series analysis. For this purpose, 118 real seismic 
ground accelerations were selected from K-NET and KiK-net in Japan. These seismic 
ground accelerations were recorded at 22 stations, covering four site classes (B, C, D, and 
E) as defined in the National Earthquake Hazards Reduction Program (NEHRP) (2000), 
based on the average shear-wave velocities in the upper 30 m, Vs30. The magnitude M of 
these records varies from 4 to 8, and the distance R varies from 20 to 200 km.

The results of PGA, PGV, PSA, Veq, and Ia were calculated from FAS of these seismic 
records using equations in Section 3 and compared with those obtained from time-series 
analysis. In the time-series analysis, PSA values were calculated using the direct-integration 
method by Nigam and Jennings (1969). Additionally, the values of Veq were calculated 
based on the definition in the time-series domain, 

 Veq =
√

−2 ∫ t0
0 ẍgẋdt (15)

where ẍg  is the ground motion acceleration, ẋ is the corresponding velocity response of the 
SDOF oscillator, t represents time, and t0 is ground-motion duration corresponding to the 
end of the time series. In addition, the values of Ia were also calculated based on the defini-
tion in the time-series domain, 

 
Ia = π

2g
∫ t0

0 ẍ2
gdt (16)

Representative comparisons of PSA and Veq for one station from each site class (a total of 
four stations) are shown in Figs. 2 and 3, respectively. Comparisons of PGA, PGV, and Ia for 
all seismic records across all stations are presented in Fig. 4. The ratios of the average PSA 
and Veq values obtained from time-series analysis to those from Eqs. (4) and (13), consider-
ing all seismic records, are shown in Fig. 5. The results indicate that PSA, Veq, PGA, PGV, 
and Ia obtained using the equations in Section 3 generally agree well with those obtained 
from time-series analysis, although the errors for PGA and PGV appear high for certain 
cases. The average relative errors across all cases are 16% for PSA, 2% for Veq, 14% for 
PGA, 25% for PGV, and 1% for Ia.

Additionally, simulated FAS and time series were used to investigate the accuracy of the 
equations presented in Section 3. The FAS Y(ω) was generated based on a widely used point-
source FAS model introduced by Boore (2003). The values of the seismological parameters 
required for this model were determined according to Boore and Thompson (2015), consis-
tent with those used by Zhang et al. (2024b). The time series for the analysis were gener-
ated from the FAS using the Stochastic Method SIMulation (Boore 2005) program using 
stochastic simulations (Boore 1983). For each FAS, a suite of 100 time series signals was 
generated. Each time series signal exhibited distinct amplitude and phase characteristics 
in its Fourier spectrum, while the average FAS of the simulated time series matched the 
target FAS derived from the point-source model. The differences between each time series 
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signal arise from the band-limited white Gaussian noise incorporated into the simulation, 
as proposed by Boore (1983). A wide range of oscillator periods T0 (0.02–10 s), moment 
magnitudes M (4–8), and distances R (20–200.01 km), were considered for the calculations. 
The selection of distance values also considers computational simplicity. Equation (11) for 
the rms duration Drms requires coefficients ce1–ce7, which are provided for discrete distances 
(e.g., 50.24 km) by Boore and Thompson (2015). To avoid interpolation, the distances cor-
responding to these directly available coefficients are used. In addition, the oscillator damp-
ing ratio ξ is set to be 5%.

For each FAS, the 100 corresponding results of PGA, PGV, PSA, Veq, and Ia were aver-
aged and compared with those obtained using the equations presented in Section 3. Some of 
these representative comparisons are shown in Figs. 6, 7 and 8. Figure 6 shows the results 
of PSA, Fig. 7 shows the results of Veq, and Fig. 8 shows the results of PGA, PGV, and Ia. In 
Fig. 8, each point represents a different combination of magnitude and distance, correspond-
ing to the 20 scenarios shown in Figs. 6 and 7 for PSA and Veq. The favorable agreement 
in these figures demonstrates the accuracy of the equations presented in Section 3. The 
average relative errors across all cases are 2% for PSA, 2% for Veq, 7% for PGA, 6% for 
PGV, and 2% for Ia, which are consistent with those typically observed in previous studies 
(Boore 2003; Boore and Thompson 2015; Zhang and Zhao 2020; Zhang et al. 2024b). The 
largest errors in PSA occurred for the case with M = 8 and R = 20 km, with the average rela-

Fig. 2 Comparisons of PSA results calculated using Eq. (4) and time-series analysis based on real seismic 
records
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tive error across different periods being about 6%. The likely reason is that the rms duration 
Drms model (Eq. (11)), used to modify the assumptions in RVT, is not sufficiently accurate 
for such cases. Additionally, the errors for Veq and Ia are similar when using real seismic 
records and simulated time series. However, the errors for PSA, PGA, and PGV are lower 
when using simulated time series compared to those obtained from real seismic records.

Fig. 4 Comparisons of results for (a) PGA, (b) PGV, and (c) Ia, calculated using Eqs. (4) or (12) and time-
series analysis based on real seismic records

 

Fig. 3 Comparisons of Veq results calculated using Eq. (13) and time-series analysis based on real seismic 
records
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Fig. 6 Comparisons of PSA results calculated using Eq. (4) and time-series analysis based on a point-source 
FAS model for the cases of: (a) R = 20 km, (b) R = 50.24 km, (c) R = 126.20 km, and (d) R = 200.01 km

 

Fig. 5 Ratios of the average (a) PSA and (b) Veq values obtained from time-series analysis to those from 
Eqs. (4) and (13) considering all real seismic records
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Fig. 8 Comparisons of results for (a) PGA, (b) PGV, and (c) Ia, calculated using Eqs. (4) or (12) and time-
series analysis based on a point-source FAS model

 

Fig. 7 Comparisons of Veq results calculated using Eq. (13) and time-series analysis based on a point-source 
FAS model for the cases of: (a) R = 20 km, (b) R = 50.24 km, (c) R = 126.20 km, and (d) R = 200.01 km
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Moreover, comparing the results for PGA, PGV, PSA, Veq, and Ia obtained using the 
equations presented in Section 3, with those directly derived from the GMPEs of these 
intensity measures may also be necessary for accuracy investigation. However, this would 
require a central FAS GMPE, a duration model, and corresponding GMPEs for each inten-
sity measure, all constructed based on the same ground-motion database to ensure consis-
tency. This is because if the database used to develop the FAS GMPE and duration model 
differs from that used for the GMPEs of these intensity measures, their estimated results 
will differ, even if the equations presented in Section 3 are fully accurate. Since such a set 
of consistent GMPEs is currently unavailable, this comparison will need to be conducted in 
future studies.

4 Seismic hazard curves for multiple intensity measures

It is observed from Eq. (3) that calculating the exceedance probability or seismic hazard 
curves involves multiple integrals, which are generally difficult to solve theoretically. 
Therefore, it is common practice in the traditional PSHA framework to discretize the con-
tinuous distributions for M and R and to convert the integrals into discrete summations 
(Baker 2008). Each element within these discrete summations can be treated as an indi-
vidual earthquake, characterized by magnitude, distance, focal parameters, etc. Since the 
natural logarithm of the IM for given a magnitude and a distance is typically considered to 
follow a normal distribution, the probability that IM exceeds a specified value P(IM > im∣m, 
r) can be directly obtained using the CDF of the normal distribution. Ultimately, the exceed-
ance probability pk(IM>im) can be obtained by summing that of each discrete earthquake.

However, employing such an approach to compute the exceedance probability 
pk(IM>im) within the proposed framework is not feasible. This is not only due to the 
additional integrals required to compute multiple intensity measures from FAS (Eqs. (4) 
– (14)), but more importantly, it is difficult to estimate P(IM > im∣m, r) for these intensity 
measures directly from a given PDF of the FAS. This difficulty arises because the proposed 
framework relies exclusively on the GMPE for FAS and ground-motion duration model, 
instead of directly using GMPEs for PGA, PGV, PGD, PSA, Veq, and Ia. Monte Carlo (MC) 
simulation can be used to address these challenges. Specifically, (1) firstly, generate enough 
samples for each random variable following given distributions; (2) then, estimate results of 
multiple intensity measures according to generated samples for each random variable using 
the equations in Section 3; (3) finally, calculate the exceedance probability pk(IM>im) by 
statistical analysis of all the obtained results. The accuracy of results by the MC simulation 
depends on the number of generated samples for each random variable, it increases with 
increasing the sample number. We attempted to calculate pk(IM>im) for PGA, PGV, PSA, 
Ia, and Veq using 100,000 samples for each random variable, which is considered sufficient 
to obtain reliable results corresponding to exceedance probabilities greater than 0.001, cov-
ering most cases of interest in engineering (Zhao and Lu 2021). However, it costs about 
2 hours for a single oscillator period considering a single source. The computation time also 
depends on the computer used in this study, which features a 12th Gen Intel Core i7-12,700 
processor, 16GB of memory, and a 256GB NVMe SSD. If multiple sources and oscillator 
periods are considered as in real cases, the MC simulation may be prohibitively inefficient.      
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Therefore, a more efficient method, namely the moment method (Zhao and Ono 2001), 
is adopted in this paper to solve the calculation. The moment method calculates the exceed-
ance probability pk(IM >im) by two fundamental steps: (1) assume a distribution form for 
these intensity measures defined in terms of the first several statistical moments; and (2) 
estimate the first several statistical moments of these intensity measures according to the 
PDFs of the basic random variables including M, R, and residuals in the GMPE for FAS and 
ground-motion duration model.      

The natural logarithm of intensity measures is assumed to follow a three-parameter distri-
bution defined in terms of mean value, deviation and skewness (Zhao et al. 2001; Zhao and 
Lu 2021). The reason for using the three-parameter distribution is that it fits statistical data 
better, particularly for those with skewness, than traditional two-parameter distributions, 
e.g., normal and lognormal distributions. Figure 9 presents an example comparison of the 
three-parameter distribution and the normal distribution in fitting the distribution of lnVeq 
(T0 = 10 s) for seismic zone C, as discussed in Section 5 (details provided below). The CDF 
of the three-parameter distribution corresponding to pk(ln(IM) > ln(im)), Fk(ln(IM)), is 
expressed as, 

 

Fk(ln(IM)) =

Φ

[
1

α3IM

(√
9 + 1

2
α2

3IM + 6α3IM
ln(IM) − µ1IM

σIM
−

√
9 − 1

2
α2

3IM

)]
 (17)

where, µ1IM , σIM , and α3IM  are the mean value, standard deviation, and skewness of the 
natural logarithm of the intensity measures. The standard deviation σIM  and the skewness 
α3IM  can be estimated by the following equations: 

 σIM =
√

µ2IM −µ2
1IM

 (18)

 
α3IM =µ3IM −3µ2IM µ1IM +2µ3

1IM

σ3
IM

 (19)

Fig. 9 Comparisons of the three-parameter distribution and the normal distribution in fitting the distribu-
tion of lnVeq (T0 = 10 s) for seismic zone C (Section 5)
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where, µ1IM , µ2IM , and µ3IM  are the first-order, second-order, and three-order statistical 
moments of the natural logarithm of these intensity measures, respectively. It is noted that 
once the three statistical moments are determined, Fk(ln(IM)) and thus seismic hazard 
curves can be obtained. In theory, the kth-order statistical moment µkIM  is expressed as, 

 µkIM = E [ln(IM)k] = ∫M ∫R ∫RF AS
∫RD

ln(IM)k
fM (m) fR (r) fRF AS

(rF AS) fRD
(rD) dmdrdrF ASdrD (20)

where RF AS  represents the residual in the GMPE for FAS, and RD represents the residual 
in the ground-motion duration Dgm model. The residuals RF AS  and RD refer to the misfit 
of a particular realization relative to the median predicted by the FAS GMPE and the Dgm 
model, respectively. For the estimation of Ia and Veq, since Dgm is not used, the integral with 
respect to RD and the associated PDF for RD will not appear in Eq. (20).            

It can be noted that Eq. (20) also contains complex multiple integrals. To simplify the 
calculation, the Latin hypercube sampling (LHS) simulation (McKay et al. 1979) was 
adopted to calculate the first three statistical moments. Unlike MC simulation, which relies 
on random sampling, LHS uses a stratified sampling strategy. This approach ensures that 
each segment of the input range is sampled, providing a more comprehensive and evenly 
distributed coverage of the input space. Therefore, adopting LHS simulation requires fewer 
samples and thus less calculation time while maintaining nearly the same accuracy as MC 
simulation.

Figure 10 presents the flowchart of the proposed framework for computing seismic 
hazard curves for multiple intensity measures. Firstly, samples for each random variable 
(including M and R) and the residuals (including RF AS  and RD) are generated using LHS 

Fig. 10 Flowchart illustrating the proposed framework for computing hazard curves of multiple intensity 
measures
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according to their PDFs. Then, the FAS and ground-motion duration Dgm are estimated for 
each set of samples based on the selected FAS GMPE and Dgm model. Next, multiple inten-
sity measures are derived from the FAS and ground-motion duration Dgm according to Eqs. 
(4) – (14), and subsequently, the first three statistical moments for each intensity measure 
can be obtained through statistical analysis. Finally, the CDFs for each intensity measure are 
calculated using Eqs. (17) – (19). The exceedance probabilities and corresponding seismic 
hazard curves, considering all the earthquake sources, are then derived using Eqs. (1) and 
(2).

Additionally, applying the proposed framework allows for the consideration of epistemic 
uncertainties in a manner similar to the traditional approach. A logic tree scheme, employing 
multiple alternative GMPEs for FAS and duration Dgm models with assigned weights, can 
be used to address epistemic uncertainties. The calculation process simply involves repeat-
ing the procedure shown in Fig. 10 for each branch of the logic tree. However, whether the 
use of a logic tree scheme in the proposed framework will produce epistemic uncertainties 
consistent with those of the conventional approach may need to be systematically discussed 
in future studies

5 Numerical example

To demonstrate the efficiency and accuracy of the proposed framework, an example calcula-
tion was conducted in this section. This example considers three seismic zones, as shown 
in Fig. 11. The PDFs of the closest distance from the site to the surface projection of the 
rupture plane distance, RJB, for the three seismic zones, are assumed to be Lognormal. The 
mean value of RJB, the standard deviation of RJB, and the mean annual rate for each seismic 
zone are presented in Table 1. The truncated exponential recurrence model is utilized as 
the PDF for magnitude, with the minimum threshold magnitude set as 6, and the maximum 
threshold magnitude set as 8. The statistical parameter θ is set as 2.6, and the time interval t 
is considered to be 50 years. In addition, the time-averaged shear wave velocity in the upper 
30 m of the soil profile beneath the site, Vs30(m/s), is considered to be 180 m/s.

In addition, the GMPE for FAS and ground-motion duration model developed by Bora et 
al. (2014) were adopted in the example calculation. The FAS GMPE is expressed as: 

Fig. 11 Details of seismic zones utilized for numerical analyses
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ln(Y (ω)) = c0+c1M+c2M2+(c3+c4M)ln(
√

R2
JB+c2

5)

−c6

√
R2

JB+c2
5+c7ln(V s30) + η + ε

 (21)

In this equation, Y(ω) is the geometric mean of FAS from both the horizontal components 
at circular frequency ω. In addition, c0 ~ c7 are regression coefficients for the FAS GMPE, η 
represents the between-event error, ε represents the within-event error, they were assumed 
to be normally distributed with zero means and standard deviation τ and φ respectively. The 

total standard deviation, σ, is calculated by σ =
√

τ2+φ2. The values of the parameters 
c0 ~ c7, τ, φ, and σ were given in Table 2 of Bora et al. (2014).

The ground-motion duration Dgm model is expressed as: 

 ln(Dgm) = c0+c1M + (c2+c3M)ln(
√

R2
JB+c2

4) +c5ln(V s30) + η + ε (22)

where, Dgm (s) is the geometric mean of the duration estimated from the two horizontal 
components, and c0 ~ c5 are regression coefficients for the Dgm model. The values of the 
standard deviations τ and φ of the between-event error η and within-event error ε, as well as 
the total standard deviation σ in Eq. (22), were all provided in Table 1 of Bora et al. (2014).

Then, seismic hazard curves for PGA, PGV, PSA, Ia, and Veq were calculated based 
on the proposed framework. 2,000 samples were generated for each random variable and 
residual based on the LHS. These results were then compared with those obtained from MC 
using 100,000 samples for each random variable. Representative comparisons are depicted 
in Figs. 12, 13 and 14. Figure 12 presents seismic hazard curves for PGA, PGV, and Ia. Fig-
ure 13 presents seismic hazard curves for PSA at different oscillator periods along with the 
corresponding uniform hazard spectra. Figure 14 presents seismic hazard curves for Veq at 
different oscillator periods as well as the corresponding uniform hazard spectra.

It can be observed that the results of the proposed framework generally agree well 
with those of the MC simulation. Although errors increase as the exceedance probability 
decreases for some intensity measures (e.g., PGA, PGV, Ia, and PSA at T0 = 0.1s), the rela-
tive error for most cases of interest in engineering (with exceedance probabilities less than 
10⁻² in 50 years) is less than 10%. Similarly, for the uniform hazard spectra of PSA, errors 
for oscillator periods around 1 s also increase as the exceedance probability decreases, but 
the average relative error across different periods remains within 5%. These errors are pri-
marily associated with the sample size in the LHS, decreasing as the number of samples 
increases, but at the cost of increased computation time. In addition, the proposed frame-
work requires only 1/50 of the calculation time compared to the MC simulation. The MC 

Seismic zone Mean value of 
RJB (km)

Standard devia-
tion of RJB (km)

The 
mean 
annual 
rate

Seismic zone A 289.50 61.42 0.04
Seismic zone B 282.43 24.22 0.06
Seismic zone C 252.24 40.11 0.12

Table 1 Detail information of 
each seismic zone
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simulation took approximately 6 hours to calculate the results in these figures, while the 
proposed framework required less than 10 minutes. In addition, it can be observed that the 
proposed framework can simultaneously provide seismic hazard curves for multiple inten-
sity measures. From the discussion outlined above, it can be concluded that the proposed 
framework can efficiently estimate multiple intensity measures and provide their seismic 
hazard curves with relatively high accuracy.

Nevertheless, when adopting the proposed framework, it should be noted that, since the 
intensity measures are not directly estimated using their GMPEs but are instead transferred 
from FAS GMPEs and duration models, errors may be introduced into the PSHA results 
during this process. How to effectively address these errors in PSHA remains uncertain. 
Similarly, errors arising from the adopted LHS and moment method could also influence 
the results. These errors can be reduced by increasing the number of LHS samples, though 
this comes at the cost of increased computation time. Additionally, although the proposed 
framework can incorporate epistemic uncertainties using a logic tree scheme, whether it 
will produce epistemic uncertainty consistent with the conventional approach also remains 
unclear. These issues warrant further exploration in future studies.

6 Conclusions

This study proposed an efficient, physically reasonable, and internally consistent framework 
for probabilistically analyzing multiple intensity measures to derive their seismic hazard 
curves. Different from the traditional approach, this study exclusively adopts the GMPE of 
the FAS coupled with a ground-motion duration model, instead of directly using GMPEs 
for multiple intensity measures. Subsequently, multiple intensity measures are simultane-
ously estimated based on relationships between FAS with each intensity measure. Such 
that, the need to construct multiple GMPEs, as in the traditional approach, is circumvented. 
Additionally, deriving the desired intensity measures from a central GMPE ensures inter-
nal consistency among these intensity measures. Moreover, given that Fourier spectra are 
more closely related to the physics of wave propagation, the scaling of FAS in GMPEs is 
easier to constrain using seismological theory than the scaling of multiple intensity mea-
sures in GMPEs. Furthermore, the moment method, in conjunction with Latin hypercube 
sampling, is applied to calculate the exceedance probability for each intensity measure, 

Fig. 12 Exceedance probabilities of (a) PGA, (b) PGV, and (c) Ia at 50 years intervals obtained using the 
proposed framework (2,000 samples) and MCS (100,000 samples)
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thereby obtaining corresponding seismic hazard curves. The main conclusions of this study 
can be briefly summarized as follows:

Fig. 13 Exceedance probabilities of PSA at 50 years intervals obtained using the proposed framework 
(2,000 samples) and MCS (100,000 samples), for cases of (a) T0 = 0.1s, (b) T0 = 0.5s, (c) T0 = 1s. Addition-
ally, uniform hazard spectra of PSA corresponding to exceedance probabilities of (d) 0.1, (e) 0.05, and 
(f) 0.02 at 50 years intervals, obtained using the proposed framework (2,000 samples) and MCS (100,000 
samples)
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(1) The accuracy of the approach for estimating multiple intensity measures from FAS was 
confirmed by comparing results of PGA, PGV, PSA, Veq, and Ia with those from time-
series analysis, based on a point-source FAS model and many real seismic records.

Fig. 14 Exceedance probabilities of Veq at 50 years intervals obtained using the proposed framework 
(2,000 samples) and MCS (100,000 samples), for cases of (a) T0 = 0.1s, (b) T0 = 0.5s, (c) T0 = 1s. Addition-
ally, uniform hazard spectra of Veq corresponding to exceedance probabilities of (d) 0.1, (e) 0.05, and (f) 
0.02 at 50 years intervals, obtained using the proposed framework (2,000 samples) and MCS (100,000 
samples)
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(2) An example calculation was conducted to demonstrate the efficiency and accuracy of 
the proposed framework. It was found that the proposed framework is highly efficient, 
requiring only 1/50 of the calculation time compared to the MC simulation, while still 
achieving a high level of accuracy comparable to that of the MC simulation.
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