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ABSTRACT
The probabilistic prediction of peak ground acceleration (PGA) using the 
Fourier amplitude spectral (FAS) model has many advantages in regions 
lacking strong ground-motion records. Currently, the implementation of 
this approach for the calculation of annual exceedance rate of PGA relies on 
Monte Carlo simulations (MCSs). However, adopting MCS requires many 
times calculations of PGA from FAS, and each time of calculation includes 
complicated integrals, the computational cost is too high to be acceptable 
for practical applications. Therefore, this study proposes an efficient 
method for the probabilistic prediction of PGA using the FAS model. For 
this purpose, a probabilistic analysis method, referred to as the moment 
method, was introduced to improve computational efficiency. The prob-
ability distribution of PGA was approximated using a three-parameter 
distribution defined according to the first three moments. The first three 
moments of the PGA were obtained based on the point-estimate and 
dimension-reduction integration method. Numerical examples were con-
ducted to verify the proposed method. It was found that the proposed 
method not only performed much more efficiently than using MCS in 
calculating the annual exceedance rate of PGA to obtain the hazard curve 
but also provides nearly the same accuracy as MCS.
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1. Introduction

Probabilistic seismic hazard analysis (PSHA) is an important tool for providing seismic hazard 
information for regional planning, important project plans such as nuclear power plants and dams 
(Jarahi 2017; Villani et al. 2020), and common structural designs (Eurocode 8 2004; Fujiwara et al.  
2006; GB 18306 2015). The main objective of the PSHA is to estimate the ground-motion intensity 
in a probabilistic manner and to obtain exceedance probabilities corresponding to different levels 
of intensity values. The PSHA has adopted many hazard measures, such as peak values of ground 
motion and response spectra at representative periods. Of which peak ground acceleration (PGA) 
is still one of the most widely used hazard measures owing to its simplicity, and its results from 
PSHA are often used coupling with spectral shape models related to site conditions, distance, etc., 
to construct design response spectra (Drouet et al. 2020; Du and Pan 2020; Eurocode 8 2004; Falak 
et al. 2023; Foytong et al. 2020; GB 18306 2015; GB 50011–2010 2016; Hsu et al. 2020; JGJ 3–2010; 
Li et al. 2020; Mahmoud, Mohamed, and Hanan 2021; Rahman et al. 2021; RLB 2015; Saurav et al.  
2022; Sinhal and Sarkar 2020). Therefore, the probabilistic prediction of PGA has received 
considerable attention. The basic steps of the probabilistic prediction of PGA involve the follow-
ing: (1) identification of potential seismic sources and their recurrences, (2) determination of the 
probability distribution of the main seismic parameters, for example, magnitude and distance, (3) 
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selection of reasonable ground-motion prediction equations (GMPEs) for PGA, and (4) calculation 
of the exceedance probability of the PGA. It is known that, a GMPE for PGA is necessary for the 
probabilistic prediction of PGA. In the past several decades, numerous studies have focused on the 
development of GMPEs for PGA (Douglas 2021), and many equations have been constructed 
based on the regression of ground-motion records. However, most of these GMPEs were devel-
oped for regions with rich earthquake data, and there are almost no GMPEs for regions lacking 
earthquake data owing to insufficient data required for regression. In addition, because of the 
different seismological characteristics in different regions, GMPEs from regions with rich earth-
quake data may not be available for regions lacking earthquake data. Therefore, it is difficult to 
perform probabilistic predictions of PGA in regions lacking strong ground records using the 
traditional procedure.

Many studies (Atkinson 2008; Atkinson and Boore 2006; Bora et al. 2014, 2016; Campbell 2003; 
Cotton et al. 2006) have been devoted to solving the problem of probabilistic prediction of PGA in 
regions lacking strong ground-motion records. Cotton et al. (2006) weighted averaged several GMPEs 
from data-rich regions to approximate a GMPE for use in regions lacking strong ground records. 
Considering the subjectivity of the selection as well as regional differences in the GMPEs when 
adopting the approaches of Cotton et al. (2006), Campbell (2003) and Atkinson (2008) suggested 
adjusting an GMPE in data-rich to data-poor regions using the PGA ratios in the two regions. Bora 
et al. (2014) pointed out that because the scaling of PGA from the source to the site is inconsistent with 
the linear system theory, PGA ratios do not purely reflect the differences between the two regions. 
Therefore, Bora et al. (2014, 2016) suggested using the GMPE of the Fourier amplitude spectrum 
(FAS) to simulate ground motion and then estimated the PGA based on the random vibration theory 
(RVT). FAS corresponds to the linear system theory and is more suitable for adjustment. Similarly, 
Boore (2003) used a FAS model, expressed in terms of various sources, paths, and site parameters, to 
characterize ground motion. The advantage of using the FAS model is that it can be determined using 
limited earthquake data with small-to-moderate magnitudes in regions lacking ground-motion 
records. The method of Boore (2003) has been adopted by many studies (Atkinson and Boore 2006; 
Boore 2018, 2020; Bora et al. 2016; Hassani and Atkinson 2015) to develop GMPEs in regions lacking 
strong ground motion records. In contrast to these studies, Zhao, Zhang, and Zhang (2023) directly 
used the FAS model, instead of developing a GMPE using the stochastic method, to conduct 
probabilistic prediction of PGA. Zhao, Zhang, and Zhang (2023) calculated the PGA from ground- 
motion FAS based on RVT according to Boore (2003). Then, they obtained hazard curves of PGA 
considering uncertainties of various seismological parameters, such as magnitude, distance, and stress 
drop, as well as all potential seismic sources using a Monte Carlo simulation (MCS). The method 
proposed by Zhao, Zhang, and Zhang (2023) avoids the process of developing a GMPE based on 
stochastic simulation as well as the additional uncertainties caused by this process. However, when 
applying MCS to address uncertainties of the seismological parameters, such as magnitude, distance, 
and stress drop, etc., to obtain the exceedance probability of PGA, many times calculations of PGA 
from FAS (equaling the product of the sample number of MCS and the number of seismic sources) 
need to be repeated. In addition, the calculation of PGA from FAS based on the random vibration 
theory includes many complex numerical integrations. In particular, when a small exceedance prob-
ability is of interest, the sample number of MCS can be considerably large, which makes the calculation 
time as long as several hours even for simple cases. Hence, the inefficiency of the method of Zhao, 
Zhang, and Zhang (2023) limits its practical application.

To improve computational efficiency, an efficient method for the probabilistic prediction of PGA 
based on the FAS model was proposed in this study. The remainder of this paper is organized as 
follows. First, the method of probabilistic prediction of PGA by Zhao, Zhang, and Zhang (2023) is 
briefly reviewed in Section 2. In Section 3, a probabilistic analysis method, namely the moment 
method (Zhao and Lu 2021), is innovatively introduced to improve computational efficiency. In 
Section 4, the efficiency and accuracy of the proposed method are verified using three examples and 
compared with the MCS. Finally, the conclusions of this study are summarized in Section 5.
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2. Probabilistic Prediction of PGA Using FAS Model Based on MCS

2.1. FAS Model

Zhao, Zhang, and Zhang (2023) adopted a FAS model introduced by Boore (2003). The FAS of 
ground-motion acceleration at the surface, Y(f), is expressed as an explicit function of the source term, 
E(M0, f), propagation path term, P(R, f), and site term, G(f), 

Y fð Þ ¼ E M0; fð ÞP R; fð ÞG fð Þ (1) 

where f is the frequency, R is the source-to-site distance, and M0 is the seismic moment. The seismic 
moment M0 can be related to the moment magnitude M by M0 = 101.5M + 16.05 (Hanks and Kanamori  
1979).

The source term E(M0, f) is commonly expressed by the Brune ω-squared point-source 
spectrum, although many other source spectrum models are equally valid (Boore 2003). 
Substituting the ω-squared point source spectrum and expressions for the path and site terms 
into Eq. (1) yields (Boore 2003) 

Yðf Þ ¼ 0:78
π

ρβ3 M0
f 2

1þ f
fc

� �2

2

6
4

3

7
5 Z Rð Þexp

� πfR
Q fð Þβ

� �� �

exp � πκ0fð ÞA fð Þ½ � (2) 

where ρ is the mass density of the crust, β is the shear-wave velocity of the crust, Z(R) represents the 
geometric attenuation, Q(f) represents the anelastic attenuation, κ0 is the diminution parameter, A(f) 
represents the crust amplification, and fc is the corner frequency representing the frequency below 
which the FAS decays fc = 4.9 × 106β(Δσ/M0)1/3, Δσ is the stress drop. Researchers have made great 
efforts for the determination of these seismological parameters. Hanks and McGuire (1981) and 
Atkinson and Boore (2014) discussed the stress drop Δσ based on earthquakes in Eastern North 
America. Folesky, Kummerow, and Shapiro (2021) estimated stress drops Δσ based on 534 earth-
quakes in Northern Chile. Nakano and Kawase (2019) calculated stress drop Δσ based on the 2018 
Hokkaido Iburi-Tobu earthquake in Japan. In addition, Boore and Joyner (1997) and Boore and 
Thompson (2015) studied the crust amplification A(f) in America. Moreover, Atkinson (1996) studied 
the diminution parameter κ0 in Eastern and Western Canada. Campbell (2009) studied the diminution 
parameter κ0 for unconsolidated and semiconsolidated sediments in Eastern North America. Sun et al. 
(2013) derived the κ0 based on the 2008 Wenchuan earthquake in China.

2.2. Estimation of PGA from FAS Based on RVT

Because the RVT can relate the peak value of a time-history motion to the motion’s FAS, the PGA can 
be obtained from the ground-motion FAS based on the RVT, which can be expressed as 

PGA ¼ pf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Dπ

ð1

0
Y ωð Þj j

2dω

s

(3) 

where Y(ω) is the FAS of the ground motion, ω is the circular frequency, and D is the ground-motion 
duration related to the corner frequency fc and distance R, expressed as D = 1/fc +0.05R (Atkinson and 
Silva 2000).

The use of RVT to predict PGA goes back to the 1980s (Boore 1983; Hanks and McGuire 1981; 
Vanmarcke and Lai 1980). This approach has been verified and widely applied by seismologists and 
engineers for several decades (Boore 1983; Campbell 2003; Hanks 1979; Hanks and McGuire 1981; 
Kottke and Rathje 2013; Rathje and Ozbey 2006; Wang and Rathje 2018). Nevertheless, the RVT 
approach is not perfect due to the assumption of stationarity of strong-ground time histories. To 
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overcome this demerit, the ground motion duration is an essential element of the RVT framework, 
and Bora et al. (2014, 2015, 2019) and Kolli and Bora (2021) have made great efforts in this aspect.

In Eq. (3), pf is the peak factor, which is defined as the ratio of the peak motion to the root-mean- 
squared motion. Many peak factor models have been developed for RVT analyses (Cartwright and 
Longuet-Higgins 1956; Davenport 1964; Vanmarcke 1975). Although the Cartwright and Longuet- 
Higgins model has been commonly applied in engineering seismology and site-response analyses, the 
Vanmarcke model provides better estimations of the peak factor (Wang and Rathje 2016). The 
cumulative distribution function (CDF) of the peak factor pf provided by Vanmarcke (1975) is 
expressed as follows: 

P pf < rð Þ ¼ 1 � exp �
r2

2

� �� �

exp � 2fz exp �
r2

2

� �

D
1 � exp �

ffiffiπ
2

p
δ1:2r

� �� �

1 � exp r2

2

� �

( )

(4) 

where δ is the bandwidth factor of FAS, which is defined as a function of the spectral moments of FAS 
as follows. 

δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 �
m1ð Þ

2

m0 �m2

s

(5) 

where mn (n = 0, 1, 2) denotes the nth order spectral moment of the square of FAS, defined by 

mn ¼
1
π

ð1

0
ωn Y ωð Þj j

2dω (6) 

where fz is the rate of zero crossing, and it is defined as follows. 

fz ¼
1

2π

ffiffiffiffiffiffi
m2

m0

r

(7) 

2.3. Estimating the Exceedance Probability of PGA Using MCS

The exceedance probability of PGA P(PGA > pga; t), focused on in this study, is defined as the PGA 
exceeding a specific level pga at a specific time interval t (year) considering all potential seismic 
sources. It can be expressed as follows (Fujiwara et al. 2006) 

P PGA> pga; tð Þ ¼ 1 �
Ynk

k¼1
1 � Pk PGA> pga; tð Þ½ � (8) 

where k refers to the kth earthquake and Pk(PGA > pga; t) is the probability that PGA exceeds pga over 
time t for the kth earthquake, nk is the number of seismic sources.

Typically, the occurrence of a seismic event is assumed to follow a Poisson arrival process (Cornell  
1968); thus the probability that PGA exceeds a special level pga over time t, Pk(PGA > pga; t), can be 
expressed as 

Pk PGA> pga; tð Þ ¼ 1 � e� pkvkt (9) 

where vk is the mean annual rate of the kth earthquake and pk is the probability that the PGA exceeds 
pga for the occurrence of the kth earthquake. Commonly, m and r are considered random variables, 
and pk is expressed as follows (McGuire 1976): 

pk pgað Þ ¼

ð

R

ð

M
P PGA> pga m; rjð ÞfM mð ÞfR rð Þdmdr (10) 
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where P(PGA > pga|m, r) is the conditional probability that PGA is greater than the intensity pga for 
a given magnitude m and source-to-site distance r, fM(m) is the probability density function (PDF) of 
the magnitude, and fR(r) is the PDF of the source-to-site distance.

The general expression of pk(pga), considering arbitrary numbers of random variables, is given by 

pk pgað Þ ¼

ð

X1

� � �

ð

Xi

� � �

ð

Xn

P pf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Dπ

ð1

0
Y ωð Þj j

2dω

s

> pga X1; � � � ;Xi; � � � ;Xnj

 !

� fX1 x1ð Þ � � � fXi xið Þ � � � fXn xnð Þdx1 � � � dxi � � � dxn

(11) 

where ω is the circular frequency, and ω = 2πf; Xi (i = 1, 2, ∙∙∙, n) represent the seismological 
parameters, such as magnitude M, source-to-site distance R, stress drop Δσ, shear-wave velocity of 
the crust β, mass density of the crust ρ, diminution parameter κ0, etc., they are all considered as 
independent random variables; fXi(xi) is the PDF of the random variable Xi, and n is the number of 
random variables.

Given that Eq. (11) includes a complicated high-dimensionality integral, its analytical solution 
cannot be obtained. Zhao, Zhang, and Zhang (2023) solved Equation (11) using the MCS. Since the 
uncertainties of the seismological parameters (such as magnitude and distance) are considered, it is 
necessary to calculate the PGA from the FAS based on the RVT many times. The detailed calculation 
steps are shown in Fig. 1.

As shown in Fig. 1, the method of Zhao, Zhang, and Zhang (2023) needs additional calculations of 
the PGA from the FAS to obtain the exceedance probability of PGA, and the calculation includes 
numerous complex numerical integrations. In addition, owing to the application of MCS, such 
calculations of PGA need to be repeated nm times for a single source, where nm is the sample number 
of MCS. When a small exceedance probability is of interest, the sample number of MCS can be 

Figure 1. Flowchart of the method by Zhao, Zhang, and Zhang (2023). Xi (i = 1, 2, ∙∙∙, n) are random variables representing the 
magnitude M, source-to-site distance R, stress drop Δσ, the shear-wave velocity of the crust β, mass density of the crust ρ, and 
diminution parameter κ0.
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considerably large (usually nm is larger than 105), because of which the calculation time is as long as 
several hours even for simple cases.

Two simple examples of calculating the annual exceedance rate of PGA and the hazard 
curve considering one and four sources were performed using MCS in our previous study, 
which cost as long as approximately one hour, considering only 10,000 samples for each 
random variable (Zhao, Zhang, and Zhang 2023). A larger number of samples is required in 
MCS when a small exceedance probability is of interest. In addition, there are a lot of 
earthquake sources that need to be considered in real cases. Therefore, a longer time is 
required to obtain the exceedance probability of the PGA. To improve the practicability of 
the method proposed by Zhao, Zhang, and Zhang (2023), it is necessary to improve the 
efficiency of obtaining the exceedance probability of PGA.

3. Probabilistic Prediction of PGA Using FAS Model Based on the Moment Method

To improve the computational efficiency for calculating the exceedance probability of the PGA, it 
is necessary to reduce the calculation times of the PGA from FAS based on RVT. To realize this 
purpose, methods based on probabilistic theory are promising. The moment method using the first 
few moments and an assumed probability distribution of PGA can solve this problem by 
performing a few calculations of PGA from FAS based on RVT. The first few moments of PGA 
can be obtained using the point-estimate method, which requires only a few calculations times of 
PGA from the FAS based on RVT.

3.1. Probability Distribution of PGA

To simply calculate the exceedance probability of PGA, a CDF of the PGA is assumed. Because of the 
ability of the three-parameter probability distribution to reflect the skewness characteristics, a three- 
parameter probability distribution based on the third-moment standardization function (Zhao and 
Ono 2000b, Zhao et al. 2001) is adopted, which can be expressed as 

FPGA PGA X1; � � � ;Xi; � � � ;Xnð Þ½ � ¼ Φ
1

α3PGA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ
1
2

α2
3PGA þ 6α3PGA

PGA � μPGA
σPGA

r

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9 �
1
2

α2
3PGA

r !" #

(12) 

where PGA(X1, ∙∙∙, Xi, ∙∙∙, Xn) is a random variable depending on the probability distributions of Xi, 
μPGA is the mean of PGA, σPGA is the standard deviation of PGA, α3PGA is the skewness of PGA, Φ(∙) is 
the CDF of a standard normal random variable. It should be noted that Eq. (12) is determined by three 
parameters, μPGA, σPGA and α3PGA, which are the first, second, and third moments, respectively.

The first three moments of the PGA, mean μPGA, standard deviation σPGA, and skewness α3PGA can 
be estimated as follows: 

μPGA ¼ μ1PGA

σPGA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2PGA � μ2
1PGA

q

α3PGA ¼
μ3PGA � 3μ2PGAμ1PGA þ 2μ3

1PGA
σ3

PGA

(13) 

where μ1PGA, μ2PGA, and μ3PGA are the first, second, and third raw moment of PGA, respectively. The 
kth raw moment of PGA, μkPGA (k = 1, 2, 3), can be formulated as 
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μkPGA ¼ E PGA X1; � � � ;Xi; � � � ;Xnð Þ½ �
k

n o

¼

ðþ1

� 1

� � �

ðþ1

� 1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
n

PGA X1; � � � ;Xi; � � � ;Xnð Þ½ �
k

� fX1 x1ð Þ � � � fXi xið Þ � � � fXn xnð Þdx1 � � � dxi � � � dxn

(14) 

where E{∙} is the expectation operator.

3.2. Calculation of the First Three Raw Moments of PGA

Similar to Eq. (11), the analytical solution for μkPGA in Eq. (14) cannot be obtained owing to the 
complicated high-dimensionality integral. Because the MCS requires too many function calls of [PGA 
(X1, ∙∙∙, Xi, ∙∙∙, Xn)]k to estimate Eq. (14), the point-estimate method was adopted to calculate μkPGA 
(Rosenblueth 1975). The point-estimate method uses a weighted sum of the results of [PGA(X1, ∙∙∙, Xi, 
∙∙∙, Xn)]k evaluated at a finite number of points to approximate μkPGA and only requires a few function 
calls of [PGA(X1, ∙∙∙, Xi, ∙∙∙, Xn)]k. Based on the point-estimate method, the kth raw moments of PGA 
μkPGA can be expressed as 

μkPGA ¼

ðþ1

� 1

� � �

ðþ1

� 1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
n

PGA X1; � � � ;Xi; � � � ;Xnð Þ½ �
k

� fX1 x1ð Þ � � � fXi xið Þ � � � fXn xnð Þdx1 � � � dxi � � � dxn

ffi
Xm

c¼1

Yn

i¼1
Wci PGA Xc1; � � � ;Xci; � � � ;Xcnð Þ½ �

k

(15) 

where c is a combination of n items from a group [1, 2, ∙∙∙, m], m is the number of estimating points, ci 
is the ith term of c, and Xci is the cith estimating point, Wci is the weight corresponding to Xci.

It should be noted that μkPGA in Eq. (15) is dependent on the distribution of the random variable Xi. 
It is difficult to avoid that estimating points may move outside the region in which the random variable 
Xi are defined (Zhao and Ono 2000a). To avoid this problem, the estimating points were obtained in 
standard normal space (Zhao and Ono 2000a). By using the standard point estimate, Eq. (15) can be 
expressed as follows, 

μkPGA ¼

ðþ1

� 1

� � �

ðþ1

� 1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
n

PGA X1; � � � ;Xi; � � � ;Xnð Þ½ �
k

� fX1 x1ð Þ � � � fXi xið Þ � � � fXn xnð Þdx1 � � � dxi � � � dxn

¼

ðþ1

� 1

� � �

ðþ1

� 1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
n

PGA T � 1 U1; � � � ;Ui; � � � ;Unð Þ
� �� �k

� ϕU1
u1ð Þ � � �ϕUi

uið Þ � � �ϕUn
unð Þdu1 � � � dui � � � dun

ffi
Xm

c¼1

Yn

i¼1
Wci PGA T� 1 Uc1; � � � ;Uci; � � � ;Ucnð Þ

� �� �k

(16) 

where Xi = T−1(Ui) is the inverse normal transformation that can be realized by Rosenblatt transfor-
mation (Rackwitz and Flessler 1978) and third-moment transformation (Zhao and Ono 2000b), Ui is 
the ith standard normal random variable, Uci is the cith estimating point in standard space, Wci is the 
weight corresponding to Uci, and φUi(ui) is the PDF of Ui.
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Because all distinct combinations must be considered, mn function calls are required to calculate 
μkPGA. Therefore, the computations involved in Eq. (16) can be massive if n is large. Dimension- 
reduction integration (Xu and Rahman 2004) was adopted in this study to avoid this problem. Herein, 
to calculate the first three raw moments of the PGA, bivariate dimension reduction was used (Xu and 
Rahman 2004). The function μkPGA can then be approximated using the following formula, 

μkPGA ffi
X

1�i< j�n
Ik

2 � n � 2ð Þ
Xn

i¼1
Ik

1 þ
n � 1ð Þ n � 2ð Þ

2
Ik

0 (17) 

where 

Ik
0 ¼ PGA X1μ; � � � ;Xiμ; � � � ;Xnμ

� �� �k

Ik
1 ¼

ðþ1

� 1

PGA X1μ; � � � ;T� 1 uið Þ; � � � ;Xnμ
� �� �kf xið Þdxi

Ik
2 ¼

ðþ1

� 1

ðþ1

� 1

PGA X1μ; � � � ;T� 1 uið Þ; � � � ;T� 1 uj
� �

; � � � ;Xnμ
� �� �

k

f xið Þf xj
� �

dxidxj

(18) 

where Xiμ is the mean of the ith random variable Xi, I0 is a function of all the variables based on their 
mean value, I1 is a function of only ui and i = 1, 2, ⋯, n, I2 is a function of only ui and uj, i, j = 1, 2, ⋯, n, 
and i < j.

Using the point-estimate method in standard normal space, the one-dimensional integral I1
k in 

Eq. (18) can be estimated as follows, 

Ik
1 ¼

Xm

c¼1
Wc PGA X1μ; � � � ;T� 1 ucið Þ; � � � ;Xnμ

� �� �k (19) 

where uci is the cth estimating point of the ith standard normal random variable and Wc is the weight 
corresponding to uci.

Similarly, the two-dimensional integral I2
k in Eq. (18) can be estimated as 

Ik
2 ¼

Xm

c1¼1

Xm

c2¼1
Wc1 Wc2 PGA X1μ; � � � ;T� 1 uic1ð Þ; � � � ;T � 1 ujc2

� �
; � � � ;Xnμ

� �� �k (20) 

where c1 is the estimating point of the first random variable in the function of ui and uj, c2 is the 
estimating point of the second random variable in the function of ui and uj, uic1 is the c1th estimating 
point of ui, ujc2 is the c2th estimating point of uj, Wc1 is the weight corresponding to uic1, Wc2 is the 
weight corresponding to ujc2.

The detailed calculation flow of the proposed method is shown in Fig. 2. Equations (17–20) indicate 
that the proposed method needs to calculate PGA from FAS for C2

n �m2 þ C1
n �mþ 1 times, as 

shown in Fig. 2. Considering 5 random variables and 7 estimating points (adopted in example 2, 
section 4), it only needs 526 calculations times of PGA from FAS when applying the proposed method, 
while for the same problem, the calculation time of PGA from FAS is usually larger than 105 when 
applying the method of Zhao, Zhang, and Zhang (2023), as shown in Fig. 1. The efficiency of the 
proposed method in calculating the exceedance probability of PGA is much better than the method of 
Zhao, Zhang, and Zhang (2023).

4. Numerical Examples and Investigations

To demonstrate the efficiency and accuracy of the proposed method, three examples are 
presented in this section: a point source, a plane source, and multiple plane sources. The 
three examples used the FAS model of the proposed method to calculate the exceedance 
probability of PGA. The mean values of the density of crust ρ, the stress drop Δσ, the shear- 
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wave velocity of crust β, and site diminution κ0 for East North America were adopted as listed 
in Table 1 (Zhang and Zhao 2020). The crust amplification A(f), the geometrical spreading Z 
(R), and the path attenuation for East North America were adopted as listed in Table 2 
(Zhang and Zhao 2020). The expositions of the three examples are as follows.

4.1. Example 1. A Point Source

Example 1 considers a point source. The source-to-site distance R was 20 km. In addition, the average 
occurrence rate v of the point source was assumed to be equal to 0.01 per year with M ≥6. The time 
interval t was considered equal to 50 years. The truncated exponential recurrence model was used as 
the PDF of magnitude, where the minimum threshold magnitude mmin was six, the maximum 
threshold magnitude mmax was eight, and the statistical parameter θ was 2.6; this model can be 
expressed as 

Figure 2. Flowchart of the proposed method.

Table 1. Probability distributions of the seismological parameters used in the Fourier amplitude spectral model.

Seismological parameters Distribution Mean Standard deviation

Density of crust ρ (g/cm3) Lognormal 2.8 0.56
Stress drop Δσ (bar) Lognormal 400 100
Shear-wave velocity of crust β (km/s) Lognormal 3.7 0.74
Site diminution κ0 (s) Lognormal 0.04 0.012

Table 2. Other seismological parameters used in the Fourier amplitude 
spectral model.

Parameters Value

Crust amplification A(f) Boore and Thompson (2015)
Geometrical spreading Z(R) Atkinson and Boore (2014)
Path attenuation Atkinson and Boore (2014)
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fM mð Þ ¼
2:6e� θm

e� θmmin � e� θmmax
(21) 

Folesky, Kummerow, and Shapiro (2021) pointed out that the probability distribution of stress drop 
Δσ is a lognormal distribution. Although probability distributions of other seismological parameters, 
including the mass density of crust ρ, the shear-wave velocity of the crust β, and the diminution 
parameter κ0 have received limited attention so far, it can easily infer that these parameters have 
uncertainties. More importantly, when these uncertainties are considered, the PGA varies even for 
a certain magnitude, distance, and site condition, which is consistent with real observation. This 
phenomenon (known as aleatory uncertainties) is commonly reflected using a sigma in the traditional 
GMPE of PGA. Thus, probability distributions of these parameters are all assumed to be lognormal 
distributions as listed in Table 1.

According to the probability distributions of the parameters in Table 1, the estimating points of κ0, 
β, Δσ, and ρ can be obtained by Abramowitz and Stegun (1972). For a seven-point estimate (m = 7) in 
the standard normal space (Zhao and Ono 2000a), the estimating points and the corresponding 
weights are given by Eq. (22). 

ui1 ¼ � 3:7504397 w1 ¼ 5:48269� 10� 4

ui2 ¼ � 2:3667594 w2 ¼ 3:07571� 10� 2

ui3 ¼ � 1:1544054 w3 ¼ 0:2401233
ui4 ¼ 0 w4 ¼ 0:4571427
ui5 ¼ 1:1544054 w5 ¼ 0:2401233
ui6 ¼ 2:3667594 w6 ¼ 3:07571� 10� 2

ui7 ¼ 3:7504397 w7 ¼ 5:48269� 10� 4

8
>>>>>>>><

>>>>>>>>:

(22) 

Using the proposed method, the conditional probability p1 (k = 1 for one point source) in Eq. (10) 
can be obtained. For comparison, 100000 samplings were used in the MCS. The conditional prob-
ability that PGA exceeds pga given the occurrence of the 1st earthquake p1 using the proposed method 
and the MCS are compared in Fig. 3.

Considering the average occurrence rate v = 0.01 per year with M ≥6 and the time interval t = 50  
years, the exceedance probability of PGA P(PGA > pga; t) can be obtained. The calculations of P(PGA > 
pga; t) using the proposed method and the MCS are compared in Fig. 4.

Figure 3. Conditional probability p1 using the proposed method and the Monte Carlo simulations (MCS).
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As shown in Fig. 4, the results estimated by the proposed method are almost the same as those 
obtained by the MCS.

4.2. Example 2. A Plane Source

In this example, the plane source was rectangular (500 × 100 km2) and the minimum source- 
to-site distance was d = 200 km; and a = 250 km, b = 350 km, c = 100 km, the depth of hypo-
center h1 = 10 km, h2 = 12.9 km, h3 = 15 km, as shown in Fig. 5. The PDF of R can be obtained 
analytically according to the source geometry and relative location of the site by assuming that 
earthquakes have an equal likelihood of occurring anywhere in the plane source (Alamilla, 
Rodriguez, and Vai 2020). However, the obtained equations are excessively complex for 
practical application. To simplify the analysis, we adopted a lognormal distribution as an 
approximation for fR(r) according to Vetter and Taflanidis (2012) and Alamilla, Rodriguez, 

Figure 4. Exceedance probability of peak-ground acceleration (PGA) at 50 years intervals obtained using the proposed method and 
MCS with 1,000,000 samples.

Figure 5. Example of a rectangular source; the circles represent hypothetical earthquakes.
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and Vai (2020). The mean value and standard deviation of distance R in fR(r) were determined 
as 233.33 km and 20.04 km, respectively, through MCS, assuming that earthquakes are equally 
probable across the entire plane source. The average occurrence rate v of the point source was 
assumed to be equal to 1 per year with M ≥6. The truncated exponential recurrence model 
was used as the PDF of magnitude, where the minimum threshold magnitude mmin was six, 
the maximum threshold magnitude mmax was eight, the statistical parameter θ was 2.6. The 
time interval t was considered equal to 50 years.

The exceedance probability of PGA was obtained using an MCS with 1,000,000 samples and the 
proposed method. As shown in Fig. 6, the results estimated by the proposed method are almost the 
same as those obtained by MCS.

Figure 6. Exceedance probability of PGA at 50 years intervals obtained using the proposed method and using MCS with 100,000 
samples.

Figure 7. Distribution of the site and the seismic sources.
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4.3. Example 3. Multiple Seismic Sources

The third example considers three plane sources, A, B, and C, as shown in Figure 7. For source 
A, the source-to-site minimum distance is dA = 200 km, and a = 250 km, b = 350 km, c = 100 km; 
the depth of hypocenter hA1 = 5 km, hA2 = 7.9 km, hA3 = 10 km. For source B, the minimum 
source-to-site distance is dB = 250 km, and e = 250 km, f = 100 km, g = 150 km; the depth of 
hypocenter hB1 = 10 km, hB2 = 13 km, hB3 = 15 km. For source C, the minimum source-to-site 
distance is dC = 200 km, and h = 250 km, i = 50 km, j = 100 km; hC1 = 10 km, hC2 = 11 km, hC3 =  
15 km. The average occurrence rates of cases with M ≥ 6 were v1 = 0.04 for source A, v2 = 0.06 
for source B, and v3 = 0.12 for source C. The truncated exponential recurrence model was used 
as the PDF of magnitude, where the minimum threshold magnitude mmin was six, the maximum 
threshold magnitude mmax was eight, the statistical parameter θ was 2.6 and the time interval 
t was 50 years.

The probability distributions of the uncertain seismological parameters are listed in Table 1, and 
the probability distributions of source-to-site distances are listed in Table 3. Other parameters of the 
FAS model are listed in Table 2. It was assumed that an earthquake occurred along a plane source with 
a uniform distribution.

The exceedance probability of PGA was obtained using an MCS with 1,000,000 samples and the 
proposed method. As shown in Figure 8, the results estimated by the proposed method are almost the 
same as those obtained by MCS.

For these three examples, it took as long as approximately 10 hours to complete the MCS 
considering 1,000,000 samples for each random variable. The proposed method required only 0.125  
hours and provided nearly the same accuracy as MCS. From the discussion outlined above, it can be 
concluded that it is not only very efficient to obtain the exceedance probability of PGA by utilizing the 
proposed method, but also that the results estimated by the proposed method are almost the same as 
those obtained by the MCS method.

Figure 8. Exceedance probability of PGA at 50 years intervals obtained using the proposed method and MCS with 100,000 samples.

Table 3. Probabilistic distributions of the source-to-site distances in Example 3.

Source-to-site distance Distribution Mean (km) Standard deviation (km)

RA (for source A) Lognormal 289.50 61.42
RB (for source B) Lognormal 282.43 24.22
RC (for source C) Lognormal 252.24 40.11
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This study primarily focuses on the methodology for probability prediction of PGA. While the 
proposed approach offers many methodological advantages, as mentioned earlier, its practical imple-
mentation currently encounters challenges and requires further research in the future. Particularly, 
since there has been limited research on the probability distributions of some seismological para-
meters, this study makes certain assumptions. Future studies, similar to Folesky, Kummerow, and 
Shapiro (2021), exploring the probability properties of these seismological parameters, are expected to 
enhance the practical applicability of the proposed method.

5. Conclusion

This study presents an efficient method for the probabilistic prediction of PGA using FAS model 
based on the moment method. In contrast to the MCS, the moment method was introduced to 
simply calculate the exceedance probability of PGA in the proposed method. First, random 
vibration theory was used to obtain the PGA from the FAS. Second, the first three moments of 
PGA were obtained using the point-estimate method based on dimension reduction. Then, the 
exceedance probability of PGA could be estimated simply and accurately using a three-parameter 
probability distribution, in which the three parameters in the probability distribution were directly 
defined in terms of their first three moments. Three numerical examples were studied to demon-
strate the accuracy and efficiency of the proposed evaluation method for the probabilistic predic-
tion of PGA using the FAS model.
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