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A B S T R A C T   

Damping modification factor (DMF) plays an important role in seismic design and hazard analysis. Many studies 
have dedicated to the DMF, but the existing formulations still show a quite large scatter. This study proposes a 
new theoretical approach for analyzing the DMF. The proposed approach models the seismic ground motion with 
a source-based Fourier amplitude spectrum (FAS) and estimates the DMF from the FAS based on random vi
bration theory. Using the proposed approach, the characteristics of the DMF are explored and explained. It is 
found that trends in the DMF with variation of the structural period and seismological parameters are mainly 
controlled by the shape of the FAS. The overall shapes of the DMF and FAS are almost symmetrical with respect 
to the period axis. When the shape of the FAS changes with seismological parameters, the DMF changes 
accordingly, and their shapes nearly always remain symmetrical.   

1. Introduction 

In both seismic design and hazard analysis, the response spectral 
values are typically specified corresponding to only a 5% damping ratio. 
In reality, the damping ratio of a structural system depends on its 
characteristics and is not always 5%. For example, structures with 
isolation systems [1] or energy dissipation devices [2] typically have 
damping ratios much greater than 5%. It is therefore often necessary to 
adjust the spectral values at a 5% damping ratio to other required 
damping levels. At present, the most effective way to solve this problem 
is using the damping modification factor (DMF). 

Since the 1980s, numerous studies have been conducted that focused 
on the DMF. The results from some early studies have been incorporated 
into seismic codes. Newmark and Hall [3] proposed three widely known 
formulas that are valid in the constant-acceleration, constant-velocity, 
and constant-displacement spectral regions. Parts of these formulas were 
adopted into the Uniform Building Code (UBC) [4] and the International 
Building Code (IBC) [5] for the design of structures with isolation sys
tems or passive energy dissipation devices. Kawashima and Aizawa [6] 
proposed a formula for absolute spectral acceleration using 206 
strong-motion records obtained at free-field stations in Japan. Their 
formulation was implemented in the Caltrans Seismic Design Criteria 
[7]. Ashour developed a formula for spectral displacement based on 
three recorded and 12 artificial earthquake accelerograms [8], which 

was implemented in an early version of the UBC [9]. Similarly, another 
equation developed by Bommer and Elnashai [10] using a large dataset 
of European strong-motion records was adopted by Eurocode 8 [11]. A 
revision of this formula was subsequently suggested by Tolis and Fac
cioli [12], using the records of the 1995 Kobe earthquake. In addition, a 
trilinear model by Ramirez et al. [13] that considered ten strong motion 
records was implemented in the current National Earthquake Hazards 
Reduction Program (NEHRP) for Recommended Seismic Provisions for 
New Buildings [14]. Most of the formulas for the DMF that have been 
incorporated into seismic codes are mainly considered as functions of 
damping ratio alone. 

Lin and Chang [15] pointed out that the DMF varies significantly 
with the structural period, particularly for higher damping ratios and 
longer periods, by analyzing 1053 accelerograms from 102 earthquakes 
in USA. Some studies further pointed out that the DMF depends not only 
on the structural parameters, i.e., structural period and damping ratio, 
but also on the seismological parameters, e.g., magnitude, site-to-source 
distance, and local site conditions. Lin and Chang [16] also investigated 
the effects of site conditions on the DMF using a database of 1,037 re
cords classified on the basis of the different soil conditions defined in the 
NEHRP 2000 Provisions [14]. Bommer and Mendis [17] further 
explored the effects of three seismological parameters, including 
magnitude, site-to-source distance, and site conditions, based on three 
empirical ground-motion prediction equations for response spectra and 
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stochastic simulations. Cameron and Green [18], Hao et al. [19], and 
Rezaeian et al. [20] studied the effects of the three seismological pa
rameters using a large number of actual strong-motion records. In 
addition, some studies [21–23] have investigated the effects of the 
duration of ground motion and the number of cycles on the DMF. Other 
studies [24–28] discussed the DMF of pulse-like ground motion based on 
a large number of near-fault strong-motion records. Hatzigeorgiou [24] 
also examined the effects of 100 artificial earthquakes on the DMF. 
Xiang et al. [29] studied the effects of the seismological parameters on 
the DMF of the vertical seismic motions. These studies developed many 
formulations for the DMF considering the structural period and various 
seismological parameters. 

However, nearly all of the aforementioned studies are based on 
statistical analysis of recorded or artificial earthquake accelerograms. 
Since such statistical analysis is sensitive to the particular seismic data 
that is used, formulations based on different data sets still show a large 
scatter [30,31]. In addition, the statistical literature has yet to elucidate 
a clear understanding of the observed trends [30,31]. Recently, several 
theoretical approaches have been developed. Palermo et al. [30] derived 
an expression for the DMF by modeling the surface ground motion with 
the Kanai–Tajimi power spectral density and measuring the response 
spectral amplitude by the standard deviation of the displacement 
response. Greco et al. [31–33] developed another approach for deter
mination of the DMF by modeling the surface ground motion with a 
non-stationary stochastic process developed by Clough and Penzien 
[34]. Clough and Penzien generated ground motion by modulating a 
stationary Gaussian white noise process by passing it through two linear 
filters. These theoretical approaches allow to the exploration and 
explanation of the effects of the structural parameters and site condi
tions on the DMF, which helps to reduce the scatter of the DMF formulas. 
However, it is still difficult to use these approaches to directly discuss 
the effects of some important seismological parameters, such as 
magnitude and site-to-source distance. Since the ground-motion models 
adopted in these studies are all site based, they do not explicitly incor
porate these seismological parameters. Although the effects of the seis
mological parameters can be implicitly reflected to some extent by 
artificially adjusting parameters in the ground-motion model, such ad
justments lack physical constraints and practical verification. To clearly 
understand the effects of the seismological parameters on the DMF, an 
approach using a source-based ground-motion model that explicitly in
cludes the seismological parameters is desirable. 

In this study, a new theoretical approach for analysis of the DMF is 
proposed. The ground motion is modeled using a source-based Fourier 
amplitude spectrum (FAS) that explicitly incorporates the seismological 
parameters. Since the FAS can be used to calculate the root-mean-square 
(RMS) value based on Parseval’s theorem, and hence the peak value 
based on random vibration theory (RVT), it can also be used to obtain 
the response spectrum representing the peak values of the oscillator 
systems. Subsequently, an equation for the DMF can be obtained as the 
ratio of the response spectrum with a given damping ratio to that with a 
5% damping ratio. Due to the use of a source-based ground-motion 
model and the simple equation for the DMF, trends in the DMF with 
variation of the seismological and structural parameters can be easily 
explored and explained. 

The rest of the paper is organized as follows. Firstly, the proposed 
approach for analysis of the DMF is introduced in Section 2. The ground- 
motion model and RVT are introduced in Sections 2.1 and 2.2, respec
tively, and the equation for analysis of the DMF is derived using the FAS 
based on RVT, in Section 2.3. In Section 3, using the developed 
approach, trends in the DMF with variation of the structural and seis
mological parameters are explored and explained. Finally, the conclu
sions are presented in Section 4. 

2. Proposed approach for analysis of the DMF 

To theoretically explore and explain the effects of the seismological 

parameters on the DMF, which can hardly be examined using existing 
approaches, a new approach for analysis of the DMF is developed in this 
section. For this purpose, a source-based ground-motion model of the 
FAS that explicitly incorporates various seismological parameters is 
adopted. Since the FAS can be used to calculate the RMS value based on 
Parseval’s theorem, and hence the peak value using a peak factor based 
on RVT, the response spectrum representing the peak values of the 
oscillator systems can then be obtained from the FAS. Subsequently, an 
equation for the DMF is obtained as the ratio of the response spectrum 
with a given damping ratio to that with a 5% damping ratio. 

2.1. Earthquake ground-motion model 

There are many approaches to obtaining the FAS, and one of the 
simplest is to compute it from a point source in terms of the various 
source, path, and site parameters using seismology theory. This study 
utilizes such a model using the point source spectrum described by 
Boore [34]. This ground-motion model has been well validated by 
comparison with observations from actual seismic records [35,36]. The 
FAS of acceleration ground motion at the surface, YðfÞ, is expressed as an 
explicit function of the source termEðM0; fÞ, the propagation path term, 
PðR; fÞ, and the site term, GðfÞ, such that 

Yðf Þ¼EðM0; f ÞPðR; f ÞGðf Þ (1)  

where, f is frequency, R is the site-to-source distance, and M0 is the 
seismic moment. The seismic moment M0 can be related to moment 
magnitude M by 

M0¼ 101:5Mþ16:05 (2) 

The source term EðM0; fÞ is commonly expressed by the Brune 
ω-squared point source spectrum, although many other source spectrum 
models are equally valid [35]. Substituting the ω-squared point source 
spectrum and the expressions for the path and site terms [35] into Eq. (1) 
results in 

Yðf Þ¼

"

0:78
π

ρβ3M0
f 2

1þ ðf=fcÞ
2

#�

ZðRÞ ⋅ exp
�
� πfR
Qðf Þβ

��

½expð � πkf ÞAðf Þ� (3)  

where, ρ is the mass density of the crust, β is the shear-wave velocity of 
the crust, Z(R) represents the geometric attenuation, Q(f) represents the 
anelastic attenuation, k is the diminution parameter, A(f) represents the 
crust amplification, and fc is the corner frequency representing the fre
quency below which the FAS decays, which is defined as 

fc¼ 4:9 � 106βðΔσ=M0Þ
1=3 (4)  

where, Δσ is the stress drop. 
Typical values of the parameters required for Eqs. (3) and (4) are 

determined based on Boore [35] and are shown in Table 1. The values of 
these parameters may be different for different regions. As this paper 
focuses on exploring and explaining the characteristics of the DMF, the 
values in Table 1 are simply determined within a reasonable range. If 
one wants to analyze the DMF of a specific region, appropriate values for 

Table 1 
Parameters used in the development of the FAS.  

Parameter Value 

Stress drop Δσ (bar) 100 
Site diminution k (s) 0.04 
Density of crust ρ (g/cm3) 2.8 
Shear-wave velocity of crust β (km/ 

s) 
3.7 

Crust amplification A(f) Boor and Joyner [37] Generic Rock 
Geometrical spreading Z(R) Atkinson and Boore [38] and Frankel et al. 

[39] 
Path attenuation Q ¼ 680f 0:38   
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the parameters should be chosen for this region. 

2.2. Random vibration theory 

To obtain the DMF from the FAS introduced above, RVT is applied. 
RVT was first used in seismology by Hanks and McGuire [40] to predict 
the peak value from the RMS value. Subsequently, the approach was 
extended in engineering seismology and site-response analysis to esti
mate the peak acceleration, response spectrum [35,36], and site 
response [41–45] from the FAS. This study further extends the approach 
to the computation of the DMF from the FAS. The key feature of RVT is 
that it can relate the peak acceleration of the time-domain motion to the 
FAS of the motion using a peak factor, which is expressed as 

amax¼ pf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Dπ

Z ∞

0
jYðωÞj2dω

s

¼ pf
ffiffiffiffiffiffi
m0

D

r

(5)  

where, amax is the peak acceleration, pf is the peak factor, D is the 
duration, ω is circular frequency, and Y(ω) is the FAS of the motion. The 
square root term in Eq. (5) represents the RMS acceleration according to 
Parseval’s theorem. The parameter m0 is the zeroth-order spectral 
moment of the FAS, and the nth order spectral moment of the FAS, mn, is 
defined by 

mn¼
1
π

Z ∞

0
ωnjYðωÞj2dω (6) 

The peak factor pf is a random variable for a stochastic process, and 
the expected value pf is commonly used in RVT analysis. Many models 
for pf have been developed [46–48], among which that of Cartwright 
and Longuet-Higgins [46] is commonly used in engineering seismology 
and site-response applications. The Cartwright and Longuet-Higgins 
model was derived by assuming that the peaks of a signal are indepen
dent and follow a Poisson process, which is expressed as 

pf ¼
ffiffiffi
2
p
Z ∞

0

n
1 �

h
1 � ζe� η2

iNeo
dη (7)  

where, ζ is a parameter that measures the bandwidth of the FAS 

ζ¼
m2
ffiffiffiffiffiffiffiffiffiffiffim0m4
p ¼

Nz

Ne
(8) 

Here, Ne represents the number of extrema, estimated by 

Ne¼ 2feD ¼
1
π

ffiffiffiffiffiffi
m4

m2

r

D (9) 

Nz represents the number of zero crossings, estimated by 

Nz¼ 2fzD ¼
1
π

ffiffiffiffiffiffi
m2

m0

r

D (10)  

fe represents the rate of extrema and fz represents the rate of zero 
crossings. For large values of Ne, Eq. (7) can be simplified as 

pf ¼ ½2 lnðNzÞ�
1=2
þ

0:5772
½2 lnðNzÞ�

1=2 (11) 

Equation (11) provides a more convenient calculation for the peak 
factor while sacrificing some accuracy. For simplicity, Eq. (11) is used in 
this study. 

In addition, it should be noted that the duration D should be varied 
depending on the estimation objectives. When the RVT is used to esti
mate the peak acceleration of the ground motion, D is taken as the 
duration of the ground motion Dgm; when the RVT is applied to estimate 
the ground-motion response spectrum, D is taken as the duration of the 
oscillator response of the ground motion Drms. Boore and Joyner [49] 
first proposed an equation for estimation of Drms from Dgm, and Liu and 
Pezeshk [50] subsequently suggested a revision of this formula, 

Drms¼Dgmþ
1

ωξ

 �
ωDgm

�
2π
�3

�
ωDgm

�
2π
�3
þ 1=3

!

(12) 

Here, ω is the oscillator circular frequency, and ξ is the oscillator 
damping ratio. The duration of the ground motion is determined by Dgm 
¼ 1/fc þ0.05R according to Atkinson and Silva [51]. And many, more 
accurate equations for Drms have been recently proposed [52,53], Eq. 
(12) is used in this study because of its simplicity. 

2.3. Equation for the DMF 

According to the FAS and RVT introduced above, an equation for 
determining the DMF is derived in this section. As the response spectrum 
represents the peak value of the oscillator response, according to Eq. (5), 
the acceleration response spectrum Sðω; ξÞ for an oscillator circular 
frequency ω and damping ratio ξ can be expressed as 

Sðω; ξÞ¼ pf ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Drms⋅ξπ

Z ∞

0
jYRðω;ω; ξÞj2dω

s

(13)  

where, pfξ and Drms⋅ξ are the peak factor and the duration, respectively, 
of the oscillator response of the ground motion. The term YRðω;ω; ξÞ is 
the FAS of the oscillator response, 

YRðω;ω; ξÞ¼ YðωÞHðω;ω; ξÞ (14) 

Here, Hðω;ω; ξÞ is the oscillator transfer function for the pseudo ac
celeration response spectrum considered in this study, which is 
expressed as 

Hðω;ω; ξÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2ξω=ωÞ2 þ
�
ðω=ωÞ2 � 1

�2
r (15) 

The DMF can then be obtained as the ratio of the response spectrum 
Sðω; ξÞ with a given damping ratio ξ to the conventional 5%-damped 
response spectrum Sðω;5%Þ, such that 

DMFðω; ξÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R∞

0 jYRðω;ω; ξÞj2dω
R∞

0 jYRðω;ω; 5%Þj2dω

v
u
u
t �

pf ξ

pf 5%
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Drms⋅5%
p

ffiffiffiffiffiffiffiffiffiffiffi
Drms⋅ξ

p (16)  

where, pf5%, Drms⋅5%, and YRðω;ω;5%Þ represent the peak factor, dura
tion, and the FAS, respectively, of the oscillator response corresponding 
to a 5% damping ratio. Equation (16) provides an analytical expression 
for the DMF. 

Equation (16) is the product of three terms: the first term is deter
mined by the FAS of the oscillator response, the second term is deter
mined by the peak factors of the oscillator response, and the third term is 
determined by the signal durations of the oscillator response. Physically, 
the three terms represent the change in the FAS, the peak factor, and the 
signal duration of the oscillator response due to variation of the damping 
ratio ξ, respectively. In addition, it should be noted that the oscillator 
period T0 (¼ 2π=ω) and damping ratio ξ in Eq. (16) represent the 
structural period and damping ratio in structural seismic design, 
respectively. For clarity and simplicity, the oscillator period is used 
instead of the structural period, and the oscillator damping ratio or 
structural damping ratio is abbreviated to simply “damping ratio” in the 
following discussions. 

3. Discussion of the DMF based on the proposed approach 

In this section, the characteristics of the DMF are explored and 
explained based on Eq. (16). As introduced above, the expression for the 
DMF is composed of three terms: the FAS term, the peak-factor term, and 
the duration term. Before exploring the characteristics of the DMF, it is 
interesting to understand how each term contributes to the DMF. For 
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this purpose, a series of FAS with M ¼ 3, 5, and 7, and R ¼ 10 km, were 
generated using Eq. (3) and shown in Fig. 1. The DMF is then calculated 
considering a variety of damping ratios from 10 to 50%. Fig. 2 shows the 
calculated DMF results; Fig. 3 shows the corresponding values of the first 
term; and Figs. 4 and 5 show the corresponding values of the second and 
third terms, respectively. 

By comparing the results in Figs. 2 and 3, it can be seen that the DMF 
is very similar to the first term for all the considered cases, including 
their values, shapes, and particularly the trends with variation of the 
oscillator period T0, damping ratio ξ, and magnitude M. Examination of 
Fig. 4 reveals that the values of the second term are very close to unity 
for all the cases considered. Fig. 5 indicates that, although the values of 
the third term are larger than unity for some periods, they are much 
closer to unity than those of the first term. These results imply that the 
first term significantly contributes to the DMF, and its contribution is 
much greater than the contributions of the second and third terms. 
Therefore, in the following discussions, the first term in Eq. (16) is used 
as a proxy for the DMF to explain its characteristics. 

3.1. Dependence of the DMF on the oscillator period 

The dependence of the DMF on the oscillator period is discussed in 
this section. It can be seen from Fig. 2 that the trend in the DMF with 
variation of the oscillator period T0 is typically consistent with that 
observed from statistical analysis of recorded seismic motions [15,19], 
which provides an additional verification of the proposed approach. The 
value of the DMF is unity at an oscillator period of zero, and it then 
decreases with increasing oscillator period. When the oscillator period 
reaches a certain value, the DMF value becomes a minimum. The value 
of the DMF then starts to increase with the oscillator period, but the 
value never exceeds unity. By comparing Figs. 1 and 2, it can be seen 
that the trend in the DMF with variation of the oscillator period T0 is 
opposite to that in the FAS with variation of its period T, and the overall 
shapes of the DMF and FAS are nearly symmetrical with respect to the 

Fig. 1. Fourier amplitude spectra with M ¼ 3, 5, and 7, and R ¼ 10 km.  

Fig. 2. Values of the DMF with: (a) ξ varying from 0.1 to 0.5; (b) M varying from 3 to 7.  

Fig. 3. Values of the first term with: (a) ξ varying from 0.1 to 0.5; (b) M varying from 3 to 7.  
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period axis. The minimum value of the DMF almost coincides with the 
peak of the FAS. The period at which the peak of the FAS occurs is 
represented by dotted line in Fig. 2. Here, it should be noted that the 
period of the FAS T is physically different from the oscillator period T0. 

To explain the trend in the DMF with variation of the oscillator 
period, the first term of Eq. (16) is analyzed in detail. The first term 

equals the ratio of 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR∞

0 jYRðω;ω; ξÞj2dω
q

to 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR∞

0 jYRðω;ω;5%Þj2dω
q

. 

According to Eq. (6), 
R∞

0 jYRðω;ω; ξÞj2dω is the zeroth-order spectral 
moment of the acceleration response, and jYRðω;ω; ξÞj2 acts as the 
zeroth-moment integrand. The zeroth-order spectral moment mathe
matically represents the area enclosed by jYRðω;ω; ξÞj2 with the fre
quency axis. Therefore, the DMF can be regarded as a measure of the 

change in the area of jYRðω;ω; ξÞj2 with the damping ratio. When the 
area of jYRðω;ω; ξÞj2 decreases relative to that of jYRðω;ω;5%Þj2, the 
DMF will decrease; conversely, when the area of jYRðω;ω; ξÞj2 increases 
relative to that of jYRðω;ω; 5%Þj2, the DMF will increase. 

To understand the characteristics of the area of jYRðω;ω; ξÞj2, the 
behavior of the zeroth-moment integrand jYRðω;ω; ξÞj2 with variation of 
the damping ratio and oscillator period are investigated. For this pur
pose, values of jYRðω;ω; ξÞj2 versus the period T for three representative 
oscillator periods, T0 ¼ 0.03 s, 0.3 s, and 8 s are shown in Fig. 6. The 
dotted line represents the results corresponding to a 5% damping ratio, 
and the solid line represents the results corresponding to a 30% damping 
ratio. 

It is noted from Fig. 6 that with increasing damping ratio, 

Fig. 4. Values of the second term, i.e., the peak factor ratio pf ξ =pf5% with: (a) ξ varying from 0.1 to 0.5; (b) M varying from 3 to 7.  

Fig. 5. Values of the third term, i.e., the duration ratio 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Drms�5%=Drms�ξ

p
with: (a) ξ varying from 0.1 to 0.5; (b) M varying from 3 to 7.  

Fig. 6. Dependence of jYRðω;ω; ξÞj2 on the damping ratio ξ and oscillator period T0.  
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jYRðω;ω; ξÞj2 decreases mainly at periods around the oscillator period T0 
and is almost unaffected at other periods. In addition, the values of 
jYRðω;ω; ξÞj2 near to T0 are strongly dependent on the value of T0. When 
T0 is very short (0.03 s), the values of jYRðω;ω; ξÞj2 at periods around T0 
are very small; but when the oscillator period increases and approaches 
the period at which the peak of the FAS occurs (0.3 s), the values become 
very large; then, as T0 increases further (8 s), the values decrease again. 

Since YRðω;ω; ξÞ is the product of the ground-motion FAS and the 
oscillator transfer function Hðω;ω; ξÞ (Eq. (14)), the behavior of 
jYRðω;ω; ξÞj2 with variation of the damping ratio and oscillator period 
can be understood by further analyzing the FAS and Hðω;ω;ξÞ. It is noted 
that the oscillator transfer function Hðω;ω; ξÞ varies with the damping 
ratio ξ but the FAS does not. Thus, the change in the values of 
jYRðω;ω; ξÞj2 with the damping ratio is solely caused by variation of the 
oscillator transfer function. Fig. 7 shows values of the oscillator transfer 
function for a variety of damping ratios. It is found that the values of the 
oscillator transfer function decrease mainly at periods around the 
oscillator period T0, i.e., T=T0 � 1, with increasing damping ratio. This 
explains why jYRðω;ω; ξÞj2 decreases mainly at periods around the 

oscillator period with increasing damping ratio (Fig. 6). In addition, 
Fig. 7 and Eq. (15) indicate that the oscillator transfer function is a 
function of the period ratio T/T0, and its values at periods around the 
oscillator period, i.e., T=T0 � 1, are constant for a specific damping 
ratio; thus, the variation of jYRðω;ω; ξÞj2 at periods around T0 with the 
value of T0 is mainly due to the change of the FAS. As illustrated by 
Fig. 8, when the oscillator period T0 is near zero where the FAS is very 
small, the values of jYRðω;ω; ξÞj2 at periods around the oscillator period 
are small; but when the oscillator period is near the peak of the FAS, the 
values are very large. Then, as the oscillator period increases where the 
FAS decreases, the values also decrease. Values of jYRðω;ω; ξÞj2 at pe
riods around the oscillator period are proportional to those of the FAS at 
the same periods. 

To better explain the trend in the DMF with variation of the oscillator 
period, the area of jYRðω;ω; ξÞj2 is then divided into two parts: one 
represents the area around the oscillator period where jYRðω;ω; ξÞj2 

decreases with increasing damping ratio, expressed by Peðω;ξÞ; the other 
represents the area where jYRðω;ω; ξÞj2 remains almost constant with 
changing damping ratio, expressed by SðωÞ. Hence, the DMF can be 
approximately expressed as 

DMFðω; ξÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðωÞ þ Peðω; ξÞ

SðωÞ þ Peðω; 5%Þ

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðωÞ þ rðξÞPeðω; 5%Þ

SðωÞ þ Peðω; 5%Þ

s

(17)  

where, r(ξ) (r < 1 for ξ > 5%) represents the rate of reduction in the area 
of jYRðω;ω; ξÞj2 around the oscillator period due to increasing damping 
ratio. As the change in the area of jYRðω;ω; ξÞj2 with the damping ratio is 
solely due to the change in the oscillator transfer function, to investigate 
the rate of reduction in the area of jYRðω;ω; ξÞj2, an expression repre
senting the rate of reduction in the oscillator transfer function is ob
tained as 

Hðω;ω; ξÞ
Hðω;ω; 5%Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0:1ω=ωÞ2 þ
�
ðω=ωÞ2 � 1

�2

�

2ξω
�

ω
�

þ
�
ðω=ωÞ2 � 1

�2

v
u
u
u
u
u
t

(18) 

Since Eq. (18) is also a function of the period ratio T/T0, the reduc
tion rates at periods around the oscillator period, i.e., T=T0 � 1, are 
constant for a specific damping ratio. Therefore, r(ξ) is approximately 
considered to be independent of the oscillator period. 

Equation (17) indicates that the value of the DMF is inversely pro
portional to the relative size of Peðω; 5%Þ with respect to SðωÞ, and that 

Fig. 7. Values of the oscillator transfer functions for various of damping ratios.  

Fig. 8. Illustration of the calculation of the DMF.  

Fig. 9. Comparison of jYRðω;ω; 5%Þj2 for oscillator periods from 0.03 to 8 s.  

H. Zhang and Y.-g. Zhao                                                                                                                                                                                                                      



Soil Dynamics and Earthquake Engineering 136 (2020) 106225

7

the maximum and minimum values of the DMF equal unity and 
ffiffiffiffiffiffiffiffi
rðξÞ

p
, 

respectively. The larger Peðω;5%Þ is with respect toSðωÞ, the closer the 
DMF is to the minimum value, i.e., 

ffiffiffiffiffiffiffiffi
rðξÞ

p
; conversely, the smaller 

Peðω;5%Þ is with respect to SðωÞ, the closer the DMF is to the maximum 
value, i.e., unity. To investigate how Peðω;5%Þ varies relative to SðωÞ
with the oscillator period, values of jYRðω;ω;5%Þj2 for a series of 
oscillator periods from 0.03 to 8 s are compared in Fig. 9. It is observed 
that the behavior of Peðω;5%Þ relative to SðωÞ with variation of the 
oscillator period is typically consistent with that of the values of 
jYRðω;ω;5%Þj2 around the oscillator period discussed above. The reason 
for this is that the values of jYRðω;ω; 5%Þj2 around the oscillator period, 
and hence Peðω; 5%Þ, vary much more significantly with the oscillator 
period than SðωÞ (Fig. 9). Peðω;5%Þ is very small relative to SðωÞ at a 
very short oscillator period (0.03 s), which can be seen more clearly in 
Fig. 6, and becomes very large at the period where the FAS is maximum 
(0.3 s); then Peðω; 5%Þ decreases relative to SðωÞ with increasing oscil
lator period (0.7, 2, 6, and 8 s). Overall, the trend in the relative size of 
Peðω;5%Þ with respect to SðωÞ with variation of the oscillator period T0 
is consistent with that in the FAS with variation of the period T. 

Combining Eq. (17) and the behavior of jYRðω;ω; ξÞj2, the trend in 
the DMF with variation of the oscillator period can then be explained. 
(1) Since the value of Peðω; 5%Þ is very small relative to the value of SðωÞ
at very short oscillator periods, values of the DMF at very short oscillator 
periods are near to the maximum value, i.e., unity. (2) Since the value of 
Peðω;5%Þ is very large relative to the value of SðωÞ at the period where 
the FAS is maximum, the value of the DMF approaches its minimum at 
this period. (3) Since the value of Peðω;5%Þ decreases relative to the 
value of SðωÞ at long oscillator periods, the value of the DMF increases 
and approaches unity at long oscillator periods. (4) From the overall 
perspective, since the trend in the relative size of Peðω;5%Þ with respect 
to SðωÞ with variation of the oscillator period is consistent with that of 
the FAS with variation of the period T, and the value of the DMF is 
inversely proportional to the relative size of Peðω; 5%Þ with respect to 
SðωÞ; the trend in the DMF with variation of the oscillator period is 
opposite to that in the FAS with variation of the period T. Therefore, the 
overall shapes of the DMF and FAS are almost symmetrical with respect 
to the period axis. 

3.2. Dependence of the DMF on the damping ratio 

The dependence of the DMF on the damping ratio is discussed in this 
section. It can be seen from Fig. 2 (a) that the trend in the DMF with 
variation of the damping ratio is also typically consistent with that 
observed from statistical analysis of recorded seismic motions [15,19]. 
The value of the DMF decreases with increasing damping ratio at all 
oscillator periods. Fig. 10 shows some representative values of the DMF 
versus the damping ratio at several oscillator periods. In this figure, kT is 
a period ratio defined as T0/Tp, where Tp represents the period at which 
the peak of the FAS occurs. The value of Tp depends on the seismological 
parameters, Tp ¼ 0.3 s for the FAS in Fig. 10(a), and Tp ¼ 0.45 s for the 

FAS in Fig. 10(b). Fig. 10 illustrates that the value of the DMF decreases 
fastest at the period where the FAS is a maximum (or the DMF is a 
minimum), i.e., kT ¼ 1, with increasing damping ratio. As the period T0 
moves away from Tp, i.e., kT becomes smaller or larger than unity, the 
decrease rate of the DMF with increasing damping ratio decreases. The 
decrease rates for two cases of kT < 1 and kT > 1, may be very close, e.g., 
kT ¼ 0.3 and 3 in Fig. 10(a). 

The trend in the DMF with variation of the damping ratio can be 
explained by referring Figs. 7 and 8 again. The values of the oscillator 
transfer function decrease with increasing damping ratio, jYRðω;ω; ξÞj2, 
and hence its area will also decrease with increasing damping ratio. 
Therefore, the value of the DMF at any oscillator period decreases with 
increasing damping ratio. The rate of decrease of the DMF with 
increasing damping ratio can be explained by further combining Eq. 
(17). This equation indicates that, the rate of decrease of the DMF de
pends on the relative size of Peðω; 5%Þ with respect to SðωÞ. When 
Peðω;5%Þ is very small compared to SðωÞ, the rate of decrease ap
proaches that of SðωÞ; conversely, when Peðω;5%Þ is very large relative 
to SðωÞ, the rate of decrease approaches that of Peðω; ξÞ. Since Peðω; ξÞ
decreases with increasing damping ratio, but SðωÞ remains almost con
stant with damping ratio, the rate of decrease of Peðω; ξÞ is clearly faster 
than that of SðωÞ. Furthermore, since the size of Peðω; 5%Þ relative to 
SðωÞ nearly reaches its maximum at the period where the FAS is 
maximum, as introduced above, the value of the DMF decreases fastest 
at this period with increasing damping ratio. As the period T0 moves 
away from Tp, i.e., kT becomes smaller or larger than unity, since 
Peðω;5%Þ decreases relative to SðωÞ as introduced above, the decrease 
rate of the DMF with increasing damping ratio decreases. 

3.3. Dependence of the DMF on the seismological parameters 

The dependence of the DMF on the seismological parameters, 
including magnitude M, site-to-source distance R, and site conditions, is 
discussed in this section. Firstly, the dependence of the DMF on the 
magnitude M is discussed. It is observed from Fig. 2 (b) that the trend in 
the DMF with variation of the magnitude is typically consistent with the 
trend observed from statistical analysis of recorded seismic motions 
[19]. At long oscillator periods, the values of the DMF decrease signif
icantly and become less dependent on the oscillator period with 
increasing magnitude M. This point can also be known by comparing 
Fig. 10(a) and (b). In addition, it can be seen by comparing Figs. 1 and 2 
(b) that the trend in the DMF with variation of the magnitude M is 
exactly opposite to that in the FAS; and no matter how the DMF and FAS 

Fig. 10. Dependence of the DMF on the damping ratio ξ, with (a) M ¼ 5, R ¼
10 km; (b) M ¼ 7, R ¼ 10 km. 

Fig. 11. Influence of magnitude M on the variation of the DMF with the 
damping ratio ξ. 
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vary with magnitude, their overall shapes retain mutual symmetry with 
respect to the period axis. Fig. 11 presents some representative values of 
the DMF versus the damping ratio ξ for the three magnitudes at a long 
oscillator period. It is found that the decrease rate of the DMF with ξ 
increases as magnitude M is increased. 

To investigate the trend in the DMF with variation of the site-to- 
source distance R, values of the DMF for three different site-to-source 
distances (R ¼ 10, 50, and 100 km) are compared in Fig. 12, and the 
corresponding FAS plots are shown in Fig. 13(a). It is noted that, 
compared to magnitude M (Figs. 2(b) and 11), the DMF varies much less 
with the site-to-source distance R, and the variation shows no clearly 
trend. The trend in the DMF with variation of the site-to-source distance 
R is also consistent with the trend observed from statistical analysis of 
recorded seismic motions [19,24]. 

Furthermore, the trend in the DMF with variation of site conditions is 
explored. It should be noted that the site term in the FAS model in 
Section 2.1 corresponds to a generic rock site appropriate for coastal 
California [35]. To explore effect of site conditions on the DMF, another 
soil site is considered. The soil site is composed of a single 37.5 m-depth 
soil layer on a half-space bedrock. The shear-wave velocities of the soil 
layer and the half-space bedrock are 150 and 750 m/s, respectively. The 
damping ratios of the soil layer and the half-space bedrock are set as 
10% and zero, respectively. Thus, the undamped site fundamental 
period is 1.0 s, and the impedance ratio of the soil layer with respect to 
the half-space bedrock is 0.2. The FAS at the soil site can then be ob
tained from that at the rock site, and the results at the soil and rock sites 
are compared in Fig. 13(b). Fig. 14 shows the values of the DMF at the 
rock and soil sites. For the soil site, it is found that the overall shapes of 
the DMF and FAS are still symmetrical with respect to the period axis, 

the valleys of the DMF occur at periods where the peaks of the FAS 
occur, and the peaks of the DMF occur at periods where the valleys of 
FAS occur (Fig. 14(a)). The peaks of the FAS at the soil site occur at the 
resonance periods (1 s and 0.33 s) of the soil site. In addition, comparing 
the DMF at the rock site with its values at the soil sites, they become 
smaller at the oscillator periods around the valleys (or the peaks of the 
FAS) (Fig. 14(a)), and become larger at oscillator periods longer than 
about 2 s (Fig. 14(a)). The decrease rate of the DMF with ξ becomes 
faster at the site fundamental period (Fig. 14(b)), and slower at long 
oscillator periods (Fig. 14(c)). 

The variation of the shape of the DMF with the seismological pa
rameters can be explained based on the first term of Eq. (16). It is noted 
that the variation of the DMF with the magnitude, source-to-site dis
tance, or site conditions is solely due to the change in the FAS, because 
the other factor affecting the DMF, i.e., the oscillator transfer function, 
does not change with these seismological parameters. In addition, since 
the first term of Eq. (16) is expressed in the form of a ratio related to the 
FAS, it is the relative values (or the shape) of the FAS at different periods 
instead of its absolute values that really affect the DMF. Thus, when 
shape of the FAS changes with the magnitude, source-to-site distance, or 
site conditions, the DMF will change accordingly. It was noted in Section 
3.1 that the overall shapes of the DMF and FAS are nearly symmetrical 
with respect to the period axis. The reason for this is that the trend in the 
values of jYRðω;ω;5%Þj2 around the oscillator period (or the relative 
size of Peðω;5%Þ with respect to SðωÞ) with variation of the oscillator 
period is consistent with that in the FAS with variation of the period T. 
Fig. 15 further shows values of jYRðω;ω;5%Þj2 for a variety of oscillator 
periods for ground motions with a larger magnitude (M ¼ 7) and at the 
soil site. It is found that, no matter how the FAS changes with the 

Fig. 12. Influence of the site-to-source distance R on variations of the DMF with the (a) period T0; and (b) damping ratio ξ.  

Fig. 13. Comparison of Fourier amplitude spectra with different (a) site-to-source distances and (b) site conditions.  
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magnitude or site conditions, the trend in the values of jYRðω;ω; 5%Þj2 

around the oscillator period (or the relative size of Peðω; 5%Þ with 
respect to SðωÞ) with variation of the oscillator period is always 
consistent with that in the FAS with variation of the period T. This ex
plains why the overall shapes of the DMF and FAS are always symmet
rical with respect to the period axis. Therefore, when the long-period 
component of the FAS increases relatively with increasing magnitude, 
the values of the DMF at long oscillator periods become less dependent 
on oscillator period. When the FAS is filtered by the soil site and peaks 

appear at the soil resonance periods, valleys appear in the DMF at the 
corresponding periods; conversely, when valleys appear in the FAS be
tween the soil resonance periods, peaks appear in the DMF. Further
more, since the FAS does not change significantly in shape with the 
source-to-site distance (Fig. 13(a)), variation in the DMF with varying 
source-to-site distance is not obvious and has no regularity. 

The behavior of the absolute values of the DMF with variation of the 
magnitude and site conditions can be explained based on Eq. (17). As 
introduced above, the value of the DMF is inversely proportional to the 

Fig. 14. Influence of site conditions on variations of the DMF with the (a) period T0; (b) damping ratio ξ at the site fundamental period; and (c) damping ratio ξ at 
long oscillator periods. 

Fig. 15. Variation of jYRðω;ω;5%Þj2 with the oscillator period for (a) ground motion with M ¼ 7; (b) ground motion at the soil site.  
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relative size of Peðω; 5%Þ with respect to SðωÞ, and both Peðω; 5%Þ and 
SðωÞ change with the FAS. Since the rate of reduction in the area of 
jYRðω;ω; ξÞj2 around the oscillator period with changing damping ratio r 
(ξ) is mainly affected by the oscillator transfer function, r(ξ) is approx
imately considered to be independent of the FAS. Fig. 16(a) indicates 
that, when the long-period components of the FAS increase relatively 
with increasing magnitude, at long oscillator periods, the rate of in
crease in values of jYRðω;ω;5%Þj2 at periods around the oscillator 
period is larger than that of values at short periods; thus, the relative size 
of Peðω; 5%Þwith respect to SðωÞ at long oscillator periods increases with 
increasing magnitude. Therefore, values of the DMF at long oscillator 
periods decrease with increasing magnitude. In addition, since the 
decrease rate of Peðω; ξÞ with ξ is faster than that of SðωÞ, the decrease 
rate of the DMF with ξ increases as magnitude M is increased. Similarly, 
Fig. 16(b) indicates that when the components of the FAS around the soil 
resonance periods (0.3, and 1.0 s) increase relatively as a result of the 
ground motion propagating through the soil layer; at oscillator periods 
equaling the soil resonance periods, the rate of increase in values of 
jYRðω;ω;5%Þj2 at periods around the oscillator period will be larger 
than that in the values at other periods. Thus, the relative size of 
Peðω;5%Þ with respect to SðωÞ at oscillator periods equaling the soil 
resonance periods increases. Therefore, values of the DMF at oscillator 
periods equaling the soil resonance periods decrease as a result of the 
ground motion propagating through the soil layer. And therefore, the 
decrease rate of the DMF with ξ at the site fundamental period becomes 
faster (Fig. 14(b)). The increase in the components of the FAS around the 
soil resonance periods (0.3–2 s) also means a relative decrease in the 
components at longer period (>2 s), although their absolute values do 
not change (Fig. 13 (b)). Thus, at longer oscillator periods (>2 s), the 
rate of increase in the values of jYRðω;ω;5%Þj2 at periods around the 
oscillator period is smaller than that in the values at short periods (0.3–2 
s); thus, the relative size of Peðω;5%Þ with respect to SðωÞ at longer 
oscillator periods (>2 s) decreases. Therefore, values of the DMF at long 
oscillator periods (>2 s) increase as a result of the ground motion 
propagating through the soil layer. And therefore, the decrease rate of 
the DMF with ξ at long oscillator periods becomes slower (Fig. 14(c)). 

4. Conclusions 

This study presents a new theoretical approach to analysis of the 
DMF. The earthquake ground motion is modeled as a source-based FAS 
that explicitly incorporates various seismological parameters. An 
equation for estimation of the DMF is derived using the FAS based on 
RVT. Using the developed approach, trends in the DMF with variation of 
the structural and seismological parameters are explored and explained 
in detail. The main findings of this study can be summarized as follows.  

(1) The trend in the DMF with variation of the oscillator period is 
mainly controlled by the shape of the FAS, and it is opposite to the 
trend in the FAS with variation of its period. The overall shapes of 
the DMF and FAS are nearly symmetrical with respect to the 
period axis. The minimum value of the DMF occurs at nearly the 
same period as the peak of the FAS.  

(2) The value of the DMF decreases with increasing damping ratio, 
and the rate of decrease is greatest at the period where the FAS is 
maximum. 

(3) The trend in the DMF with variation of the seismological pa
rameters is also mainly controlled by the shape of the FAS. When 
the FAS changes with the seismological parameters, the DMF 
changes accordingly, and their overall shapes almost always 
retain symmetry with respect to the period axis. When long- 
period components of the FAS increase with increasing magni
tude, the values of the DMF at long oscillator periods decrease 
and become less dependent on the oscillator period. When the 
FAS is filtered by a soil layer, valleys appear in the DMF at periods 
where the peaks of the FAS occur and peaks appear at periods 
where the valleys of the FAS occur. Due to there being minimal 
change in the shape of the FAS when varying the source-to-site 
distance, the DMF does not change significantly with source-to- 
site distance. 
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Fig. 16. Illustration of the behavior of the absolute values of the DMF with variation of (a) the magnitude and (b) site conditions.  

H. Zhang and Y.-g. Zhao                                                                                                                                                                                                                      

https://doi.org/10.1016/j.soildyn.2020.106225
https://doi.org/10.1016/j.soildyn.2020.106225


Soil Dynamics and Earthquake Engineering 136 (2020) 106225

11

References 

[1] Naeim F, Kelly JM. Design of seismic isolated structures. From theory to practice. 
New York: John Wiley and Sons; 1999. 

[2] Constantinou MC, Soong TT, Dargush GF. Passive energy dissipation systems for 
structural design and retrofit, monograph series. New York: MCEER, Buffalo; 1998. 

[3] Newmark NM, Hall WJ. Earthquake spectra and design EERI monograph series. 
Oakland, CA: Earth Eng Research Inst; 1982. 

[4] UBC. Uniform building code, international conference of building officials. 1997 
[Whittier, CA]. 

[5] IBC. International building code. Whittier, CA: International Conference of 
Building Officials; 2000. 

[6] Kawashima K, Aizawa K. Modification of earthquake response spectra with respect 
to damping ratio. Proceedings of the 3rd US national conference on earthquake 
engineering, vol. II. Charleston, SC; 1986. p. 1107–16. 

[7] Caltrans seismic design Criteria 2004, California, Department of Transportation, 
[Sacr., California, USA]. 

[8] Ashour SA. Elastic seismic response of buildings with supplemental damping. 
Michigan University: Ph.D. Thesis, Department of Civil Engineering; 1987. 

[9] UBC. Uniform building code, international conference of building officials. 1994 
[Whittier, CA]. 

[10] Bommer JJ, Elnashai AS. Displacement spectra for seismic design. J Earthq Eng 
1999;3:1–32. 

[11] Eurocode 8. Design of structures for earthquake resistance, Part 1: general rules, 
seismic actions and rules for buildings. Brussels: CEN; 2004. EN 2004-1-1. 

[12] Tolis SV, Faccioli E. Displacement design spectra. J Earthq Eng 1999;3:107–25. 
[13] Ramirez OM, Constantinou MC, Kircher CA, Whittaker AS, Johnson MW, Gomez 

JD, Chrysostomou CZ. Development and evaluation of simplified procedures for 
analysis and design of buildings with passive energy dissipation systems. New 
York: Multidisciplinary Center for Earthquake Engineering Research (MCEER), 
University of New York at Buffalo; 2000ReportNo: MCEER-00-0010. 

[14] NEHRP. Recommended Provisions for seismic regulations for new buildings and 
other structures. Washington DC: Federal Emergency Management Agency; 2000. 

[15] Lin YY, Chang KC. A study on damping reduction factor for buildings under 
earthquake ground motion. J Struct Eng 2003;129:206–14. 

[16] Lin YY, Chang KC. Effects of site classes on damping reduction factors. J Struct Eng 
2004;130(11):1667–75. 

[17] Bommer JJ, Mendis R. Scaling of spectral displacement ordinates with damping 
ratios. Earthq Eng Struct Dynam 2005;34:145–65. 

[18] Cameron WI, Green RU. Damping correction factors for horizontal ground-motion 
response spectra. Bull Seismol Soc Am 2007;3:934–60. 

[19] Hao A, Zhou D, Li Y, Zhang H. Effects of moment magnitude, site conditions and 
closest distance on damping modification factors. Soil Dynam Earthq Eng 2011;31: 
1232–47. 

[20] Rezaeian S, Bozorgnia Y, Idriss IM, Abrahamson N, Campbell K, Silva W. Damping 
scaling factors for elastic response spectra for shallow crustal earthquakes in active 
tectonic regions: “average” horizontal component. Earthq Spectra 2014;30(2): 
939–63. 

[21] Stafford PJ, Mendis R, Bommer JJ. Dependence of damping correction factors for 
response spectra on duration and numbers of cycles. J Struct Eng 2008;134(8): 
1364–73. 

[22] Zhou J, Tang K, Wang H, Fang X. Influence of ground motion duration on damping 
reduction factor. J Earthq Eng 2014;18(5):816–30. 

[23] Nagao K, Kanda J. Estimation of damping correction factors using duration defined 
by standard deviation of phase difference. Earthq Spectra 2015;31:761–83. 

[24] Hatzigeorgiou GD. Damping modification factors for SDOF systems subjected to 
near-fault, far-fault and artificial earthquakes. Earthq Eng Struct Dynam 2010;39: 
1239–58. 

[25] Hubbard DT, Mavroeidis GP. Damping coefficients for near-fault ground motion 
response spectra. Soil Dynam Earthq Eng 2011;31:401–17. 

[26] Khoshnoudian F, Ahmadi E, Azad AI. Damping coefficients for soil–structure 
systems and evaluation of FEMA440 subjected to pulse-like near-fault earthquakes. 
Soil Dynam Earthq Eng 2014;61–62:124–34. 

[27] Mollaioli F, Liberatore L, Lucchini A. Displacement damping modification factors 
for pulse-like and ordinary records. Eng Struct 2014;78:17–27. 

[28] Pu W, Kasai K, Karoki EK, Huang B. Evaluation of the damping modification factor 
for structures subjected to near-fault ground motions. Bull Earthq Eng 2016;14: 
1519–44. 

[29] Xiang Y, Huang QL. Damping modification factor for the vertical seismic response 
spectrum: a study based on Japanese earthquake records. Eng Struct 2019;179: 
493–511. 

[30] Palermo M, Silvestri S, Trombetti T. Stochastic-based damping reduction factors. 
Soil Dynam Earthq Eng 2016;80:168–76. 

[31] Greco R, Fiore A, Marano GC, Briseghella B. Effects of excitation bandwidth on 
damping reduction factor. J Earthq Eng 2018:1–28. 

[32] Greco R, Fiore A, Briseghella B. Influence of soil type on damping reduction factor: 
a stochastic analysis based on peak theory. Soil Dynam Earthq Eng 2018;104: 
365–8. 

[33] Greco R, Vanzi I, Lavorato D, Briseghella B. Seismic duration effect on damping 
reduction factor using random vibration theory. Eng Struct 2019;179:296–309. 

[34] Clough RW, Penzien J. Dynamics of structures. New York: McGraw-Hill, Inc.; 1977. 
[35] Boore DM. Simulation of ground motion using the stochastic method. Pure Appl 

Geophys 2003;60:635–76. 
[36] Boore DM. Stochastic simulation of high-frequency ground motions based on 

seismological models of the radiated spectra. Bull Seismol Soc Am 1983;736: 
1865–94. 

[37] Boore DM, Joyner WB. Site amplifications for generic rock sites. Bull Seismol Soc 
Am 1997;87:327–41. 

[38] Atkinson GM, Boore DM. Ground motion relations for eastern North America. Bull 
Seismol Soc Am 1995;85:17–30. 

[39] Frankel A, Mueller C, Barnhard T, Perkins D, Leyendecker E, Dickman N, Hanson S, 
Hopper M. National seismic hazard maps: documentation june 1996. U.S. Geol. 
Surv. Open-File Rept. 96–532, 69 pp. 

[40] Hanks TC, McGuire RK. The character of high-frequency strong ground motion. 
Bull Seismol Soc Am 1981;71:2071–95. 

[41] Rathje EM, Ozbey MC. Site-specific validation of random vibration theory-based 
seismic site response analysis. J Geotech Geoenviron Eng 2006;132(7):911–22. 

[42] Kottke AR, Rathje EM. Comparison of time series and random-vibration theory site- 
response methods. Bull Seismol Soc Am 2013;103:2111–27. 

[43] Wang X, Rathje EM. Influence of peak factors on site amplification from random 
vibration theory based site-response analysis. Bull Seismol Soc Am 2016;106:1–14. 

[44] Wang X, Rathje EM. Development of ground-motion duration models for use in 
random vibration theory site-response analysis. Bull Seismol Soc Am 2018;108: 
2104–16. 

[45] Wang X, Rathje EM. Accounting for changes in duration in random-vibration- 
theory- based site-response analysis. Bull Seismol Soc Am; 108: 2117–2129. 

[46] Cartwright DE, Longuet-Hlggms MS. The statistical distribution of the maxima of a 
random function. Proc Roy Soc Lond Math Phys Sci 1956;237:212–23. 

[47] Davenport AG. Note on the distribution of the largest value of a random function 
with application to gust loading. Proc Inst Civ Eng 1964;28:187–96. 

[48] Vanmarcke EH. On the distribution of the first-passage time for normal stationary 
random processes. J Appl Mech 1975;42:215–20. 

[49] Boore DM, Joyner WB. A note on the use of random vibration theory to predict 
peak amplitudes of transient signals. Bull Seismol Soc Am 1984;745:2035–9. 

[50] Liu L, Pezeshk S. An improvement on the estimation of pseudoresponse spectral 
velocity using RVT method. Bull Seismol Soc Am 1999;895:1384–9. 

[51] Atkinson GM, Silva W. Stochastic modeling of California ground motions. Bull 
Seismol Soc Am 2000;90:255–74. 

[52] Boore DM, Thompson EM. Empirical improvements for estimating earthquake 
response spectra with random-vibration theory. Bull Seismol Soc Am 2012;102: 
761–72. 

[53] Boore DM, Thompson EM. Revisions to some parameters used in stochastic-method 
simulations of ground motion. Bull Seismol Soc Am 2015;105:1029–41. 

H. Zhang and Y.-g. Zhao                                                                                                                                                                                                                      

http://refhub.elsevier.com/S0267-7261(19)31453-8/sref1
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref1
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref2
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref2
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref3
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref3
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref4
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref4
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref5
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref5
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref6
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref6
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref6
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref8
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref8
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref9
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref9
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref10
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref10
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref11
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref11
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref12
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref14
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref14
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref15
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref15
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref16
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref16
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref17
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref17
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref18
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref18
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref19
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref19
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref19
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref20
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref20
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref20
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref20
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref21
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref21
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref21
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref22
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref22
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref23
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref23
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref24
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref24
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref24
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref25
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref25
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref26
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref26
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref26
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref27
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref27
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref28
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref28
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref28
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref29
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref29
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref29
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref30
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref30
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref31
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref31
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref32
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref32
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref32
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref33
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref33
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref34
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref35
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref35
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref36
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref36
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref36
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref37
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref37
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref38
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref38
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref40
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref40
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref41
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref41
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref42
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref42
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref43
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref43
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref44
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref44
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref44
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref46
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref46
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref47
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref47
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref48
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref48
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref49
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref49
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref50
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref50
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref51
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref51
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref52
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref52
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref52
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref53
http://refhub.elsevier.com/S0267-7261(19)31453-8/sref53

	Damping modification factor based on random vibration theory using a source-based ground-motion model
	1 Introduction
	2 Proposed approach for analysis of the DMF
	2.1 Earthquake ground-motion model
	2.2 Random vibration theory
	2.3 Equation for the DMF

	3 Discussion of the DMF based on the proposed approach
	3.1 Dependence of the DMF on the oscillator period
	3.2 Dependence of the DMF on the damping ratio
	3.3 Dependence of the DMF on the seismological parameters

	4 Conclusions
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A Supplementary data
	References


