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The fundamental mode shape of layered soil pro¯les is a key site response parameter, it has been

adopted into the Japanese seismic code to represent the shape of the soil displacement response
along the vertical direction. In this study, a simple approach for estimating the fundamental

mode shape of layered soil pro¯les is developed. The proposed approach can directly model the

fundamental mode shape and can be conveniently implemented using arithmetic operations,

thus making it suitable to be used by the engineers. The assessments of the proposed approach
using a series of layered soil pro¯les demonstrate that it can produce results in close agreement

with the actual results.
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1. Introduction

The natural frequencies, mode shapes, and participation factors are the basic in-

formation that are important to perform the site response analysis of layered soil

pro¯les [Zhao, 1997; Sarma, 1994]. Given that the site response is generally domi-

nated by the ¯rst mode, it is often approximated by the response of the ¯rst mode in

terms of the fundamental period and mode shape [Francesca et al., 2010; Tsang et al.,

2006; Lam et al., 2001; Kenji et al., 2001]. Under the Japanese seismic code, the

non-linear site e®ects are estimated using the fundamental mode shape to represent

the shape of the soil displacement response along the vertical (height) direction

[Mistumasa et al., 2003; MLIT, 2000]. In principle, the fundamental period and mode

shape can be exactly obtained by solving the equilibrium equations of free vibration,

or by performing an accurate estimation via eigenvalue analysis by discretizing the

continuous soil pro¯le into a lumped-parameter multi-degree-of-freedom (MDOF)
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model. However, the implementation of such methods is generally quite cumbersome

in practice. A primary example of a situation in which a simple approach for de-

termining the fundamental mode shape of layered soil pro¯les is desirable, involves

the determination of the \base", e.g. the extent of the crust to be included in the

model of a bottomless soil pro¯le, before calculating the response. In such situations,

understanding the mode shape of the soil model can be useful [Hadjian, 2002];

however, this modeling decision is usually performed in an ad-hoc fashion, and

accurate computation is generally not desirable at this stage.

Although numerous studies have focused on simple approaches for obtaining the

fundamental periods of layered soil pro¯les [Hadjian, 2002; Dobry et al., 1976;

Vijayendra et al., 2015], there have been few studies on developing approaches for

obtaining the fundamental mode shape. Dobry et al. [1976] concluded that the

Simpli¯ed Version of the Rayleigh procedure can provide accurate solutions for both

the fundamental period and mode shape. But, the simpli¯ed Rayleigh procedure is

iterative [Hadjian, 2002]. Subsequently, Hadjian [2002] developed a direct approach

to calculate the fundamental mode shape. However, this method is not readily ap-

plicable in practicing engineering because the implementation of the Hadjian method

requires repeated exponential calculation.

In this paper, a simpler and accurate method for estimating the fundamental mode

shape of layered soil pro¯les is proposed. The proposed approach can directlymodel the

fundamental mode shape and can be conveniently implemented using arithmetic

operations. The remainder of the paper is organized as follows. In Sec. 2, the simplest

current method for estimating the fundamental mode shape, i.e. the Hadjian method

[Hadjian, 2002], is brie°y reviewed. In Sec. 3, a new equation for the analysis of the

natural frequencies and mode shapes of layered soil pro¯les is derived. In Sec. 4, a new

approach based on the use of this equation in conjunction with a simple equation for

the fundamental period is developed to estimate the fundamental mode shape. In

Sec. 5, the accuracy of the proposed procedure is assessed and compared with that of

the Hadjian method using a series of layered soil pro¯les. It is observed that both

methods provide considerably good accuracy while estimating the fundamental mode

shape; however, the implementation of the proposed method is much more convenient

than that of the Hadjian method. In Sec. 6, the conclusions are presented.

2. The Hadjian Method

Several simple methods for the estimation of the fundamental mode shape of layered

soil pro¯les have been developed [Hadjian, 2002; Dobry et al., 1976]. Among these

methods, the method proposed by Hadjian [2002] is currently considered to be the

simplest and can be implemented using spreadsheets. This section brie°y reviews

Hadjian's method.

The Hadjian method estimates the fundamental mode shape using the results of

the fundamental period. Thus, before calculating the fundamental mode shape, one

should estimate the fundamental period. The Hadjian method as an enhancement to
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the Madera procedure [Madera, 1970] calculates the fundamental period based on

the solution of the fundamental period of a two-layer soil pro¯le on bedrock. Figure 1

illustrates the calculation process that is followed in the Hadjian method. The so-

lution starts by replacing the top two layers of an n-layer soil pro¯le by an equivalent

single layer using the two-layer system solution. This ¯rst equivalent \single" layer

and the third layer of the n-layer pro¯le are then treated as a second two-layer

system, and, in turn, replaced by an equivalent single layer. By application of this

procedure successively to the remaining lower layers of the soil pro¯le, the solution of

the fundamental period of the total soil pro¯le is obtained. The Hadjian method uses

the two-layer system solution successively a total of n� 1 times. During the appli-

cation of this procedure, the fundamental period of the soil layers that are decoupled

from the ground surface to each soil interface, T1�i, can also be obtained. Here, the

subscript 1� i refers to the layers 1 through i.

The two-layer system solution was originally presented by Madera [1970] in the

form of charts; subsequently, this solution was replaced by more convenient

approximate equations by Hadjian [2002], which are as follows:

T

T1

¼ 1þ H1

H2

T2

T1

� �
2

; T2=T1 � 1; ð1Þ

T
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�

1þ H1�1
H2�2

� �
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� �1
�
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where

� ¼ 4� 1:8
H1�1
H2�2

; � ¼ 1� 0:2
H1�1
H2�2

� �
2

:

Here, H1, �1, and T1 (¼ 4H1/V1) are the height, density, and decoupled fundamental

period of the top layer, respectively; H2, �2, and T2 (¼ 4H2/V2) are the height,

density, and decoupled fundamental period of the bottom layer, respectively. Fur-

thermore, V1 and V2 are the shear wave velocities of the layers, and T is the fun-

damental period of the two-layer soil pro¯le on bedrock.

(a) (b) (c) (d)

Fig. 1. Estimation of the fundamental period of a multilayer soil pro¯le on bedrock using the Madera

procedure.
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Further, using the results of the fundamental period, the fundamental mode

shape, X1ðzÞ, can be estimated as follows:

X1ðziÞ ¼ cos
�

2

T1�i

T1�n

� �
; ð4Þ

where X1ðziÞ represents the value of the fundamental mode shape at the ith soil

interface, T1�i represents the decoupled fundamental period of the soil layers from

the ¯rst interface (the ground surface) to the ith interface, and T1�n represents the

fundamental period of the overall soil pro¯le. As mentioned above, all values of T1�i

(i ¼ 1� n) can be obtained, while estimating the fundamental period using the

Hadjian method.

After estimating the fundamental mode shape, the corresponding participation

factor, p, can be obtained by

p ¼ XT
1 fmig

XT
1 ½M �X1

; ð5Þ

where fmig is the vector of the masses lumped at the layer interfaces, and ½M� is the
associated diagonal mass matrix.

The Hadjian method can directly model the fundamental mode shape and can

be implemented using a spreadsheet [Dihoru et al., 2016; Nawras et al., 2016;

Motazedian et al., 2011]. However, an exponential calculation (Eq. (3)) needs to be

repeatedly applied for a multilayer soil pro¯le, which makes the Hadjian method

di±cult to apply. In the following section, a simpler but still accurate method for

estimating the fundamental mode shape of layered soil pro¯les is described.

3. An Equation for the Natural Frequencies and Mode Shapes

of Layered Soil Pro¯les

In this section, an equation for the estimation of natural frequencies and mode shapes

is derived to produce a simple method for the estimation of the fundamental mode

shape of layered soil pro¯les. To derive the equation, a multilayer soil pro¯le on rigid

bedrock, which is assumed to vibrate freely in the natural mode, is considered as

depicted in Fig. 2.

To establish an equilibrium between the inertial and elastic forces at the ith

interface in this model, the inertial force of the soil layers above the ith interface,

FðziÞ, must be equal to the elastic force, T (ziÞ, acting on this interface:

F ðziÞ ¼ T ðziÞ; ð6Þ
where zi is the depth of the ith interface.

The inertial force of the soil layers above the ith interface can be calculated as

F ðziÞ ¼
Z z2

z1

��ðzÞ @
2u

@t2
dzþ

Z z3

z2

��ðzÞ @
2u

@t2
dzþ � � � þ

Z zi

zi�1

��ðzÞ @
2u

@t2
dz; ð7Þ
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where u is the displacement of the soil layers that can be given by

uðz; tÞ ¼ XðzÞ sinð!tþ ’Þ: ð8Þ

Here, ! is the natural frequency of the layered soil pro¯le, andX is the corresponding

mode shape.

By substituting Eq. (8) into Eq. (7), F ðziÞ can be expressed as

F ðziÞ ¼
Z z2

z1

�ðzÞ!2XðzÞdzþ
Z z3

z2

�ðzÞ!2XðzÞdzþ � � � þ
Z zi

zi�1

�ðzÞ!2XðzÞdz
 !

� sinð!tþ ’Þ: ð9Þ
For simplicity, the mode shape, X, is assumed to vary linearly with the depth within

each soil layer; Eq. (9) can then be simpli¯ed as follows:

FðziÞ ¼
1

2
!2 sinð!tþ ’Þ

Xi�1

j¼1

�jðXðzjÞ þXðzjþ1ÞÞHj: ð10Þ

Similarly, the elastic force acting at the ith interface can be simply calculated as

T ðziÞ ¼ sinð!tþ ’Þ Gi

Hi

ðXðziÞ �Xðziþ1ÞÞ; ð11Þ

where Gi is the shear modulus of the ith soil layer, Gi ¼ �iV
2
i , and Vi is the shear

wave velocity.

Substituting Eqs. (10) and (11) into Eq. (6) gives

Gi

Hi

ðXðziÞ �Xðziþ1ÞÞ ¼
1

2
!2
Xi�1

j¼1

�jðXðzjÞ þXðzjþ1ÞÞHj: ð12Þ

Fig. 2. A multilayer soil pro¯le on a rigid bedrock.
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From Eq. (12), the following are obtained:

Xðziþ1Þ ¼ XðziÞ �
HiKi

Gi

; ð13aÞ

Ki ¼
1

2
!2
Xi�1

j¼1

�jðXðzjÞ þXðzjþ1ÞÞHj: ð13bÞ

Because both the fundamental frequency, !, and mode shape, X, are unknown,

Eq. (13) has no direct solution. However, ! and X can be obtained using the

following steps:

(1) If a preliminary value is assumed for !, all the values of the fundamental mode

shape, XðziÞ, can be recursively calculated by setting the value at the surface to

be one, i.e. by setting Xðz1Þ ¼ 1.

(2) It is well known that the value of the fundamental mode shape at the base layer,

XðznÞ, equals zero for natural vibration. Thus, if XðznÞ is zero, the initial as-

sumption of ! in Step (1) represents the accurate natural frequency of the

vibration; otherwise, the assumed value of ! is adjusted.

(3) Repeat Steps (1) and (2) until the resulting value of XðznÞ becomes zero. At this

point, the natural frequencies and mode shapes can be obtained.

To illustrate how to adjust the assumed value of ! according to the calculated value

ofXðznÞ, we perform a calculation example using Eq. (13) and a sample selected from

the strong-motion seismograph networks [K-NET, KIK-net]. The shear wave ve-

locity pro¯le of the sample site is shown in Fig. 3. The relationship between the

assumed frequency, !, and the calculated value of the fundamental mode at the base,

XðznÞ, is shown in Fig. 4. It is observed that the positive estimated values of XðznÞ

Fig. 3. Shear wave velocity of a soil pro¯le.
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correspond to values of ! smaller than the true frequency for odd modes, with the

converse applies for even modes. Similarly, if the estimated value of XðznÞ is nega-
tive, the assumed ! will be larger/smaller than the true frequency for odd/even

modes. On the basis of this relation, the natural periods and mode shapes can be

gradually determined.

In principle, this method can provide any natural frequency and mode shape with

a desired degree of accuracy. Given that the values of the mode shape between two

adjacent soil interfaces are assumed to vary linearly in the derivation of Eqs. (10) and

(11), the accuracy of the results obtained using Eq. (13) depends only on the soil

layer height to be discretized.

4. Method for Obtaining the Fundamental Mode Shape

4.1. Estimation of the fundamental mode shape

Although the method developed in Sec. 3 can produce any natural frequency

and mode shape with a desired degree of accuracy, the requirement of repeated

assumptions and judgments increases the di±culty of applying this method in

practical engineering. Note that if a value of the fundamental frequency is given,

Eq. (13) can directly produce the fundamental mode shape. In addition, many simple

methods have been developed for the estimation of the fundamental period [Dobry

et al., 1976]. Thus, using Eq. (13) in conjunction with a simple method for the

fundamental period should allow for the simple calculation of the fundamental mode

shape. In theory, the more accurate the selected simple method for the fundamental

period, the more accurate the obtained fundamental mode shape should be. However,

the analysis of a variety of simple methods for estimating the fundamental period

reveals that the accuracy of the fundamental mode shape given by Eq. (13) is not

sensitive to that of the fundamental period. Therefore, this study utilizes the simplest

and most commonly used method to calculate the fundamental period

T ¼ 4H2Pn
i¼1 ViHi

: ð14Þ

Fig. 4. Estimated value of the fundamental mode shape at the base as a function of frequency.
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Thus, the fundamental mode shape of layered soil pro¯les can be estimated as

follows:

(1) Estimate the fundamental period using Eq. (14).

(2) Substitute the obtained fundamental period into Eq. (13) to determine the

fundamental mode shape.

(3) Given that the fundamental period estimated using Eq. (14) is not precise, any

error in the obtained fundamental period will be transferred to the fundamental

mode shape. To reduce this error, the obtained values of the fundamental mode

shape should be modi¯ed. As the value of the fundamental mode shape at the

base layer, X1ðznÞ, theoretically equals zero for natural vibration, the modi¯-

cation of the fundamental mode shape values will proceed as follows:

Xm
1 ðziÞ ¼ X1ðziÞ �X1ðznÞ; ð15Þ

whereXm
1 ðziÞ is the modi¯ed value of the fundamental mode shape at the ith soil

interface.

The proposed procedure contains three simple equations, i.e. Eqs. (13)–(15), each of

which comprises only arithmetic operations, which makes it easy to estimate the

result. By comparing with the Hadjian method introduced in Sec. 2 (i.e. Eqs. (1)–(4)),

the simplicity of the proposed method can be observed.

After identifying the fundamental mode shape, the corresponding participation

factor can be estimated based on Eq. (5) as used by Hadjian [2002]. Herein, by further

substituting the mass lumped at the layer interface, mi ¼ 0:5ð�i�1Hi�1þ �iHiÞ,
into Eq. (5), a direct expression for the participation factor corresponding to the ¯rst

mode, pL, can be obtained as

pL ¼ Xm
1 ðz1Þ�1H1 þ

Pn�1
i¼2 ð�i�1Hi�1 þ �iHiÞXm

1 ðziÞ
ðXm

1 ðz1ÞÞ2�1H1 þ
Pn�1

i¼2 ð�i�1Hi�1 þ �iHiÞðXm
1 ðziÞÞ2

: ð16Þ

Although Eq. (16) seems complicated at ¯rst glance, it also contains only the

arithmetic operations.

4.2. Application of the proposed method

This subsection presents a calculation example in which the proposed procedure is

applied to a multilayer soil pro¯le described in Sec. 3 for the shear wave velocity that

is depicted in Fig. 3. The soil data for each layer are listed in Table 1. The calculation

steps are detailed below:

. Step 1: The fundamental period is calculated by Eq. (14), resulting in a funda-

mental period of 0.8347 s.

. Step 2: By substituting the fundamental period into Eq. (13), the values of the

fundamental mode shape can be recursively obtained by setting the value at the

surface to one, i.e. X1ðz1Þ ¼ 1. The obtained results are presented in Table 2. To

attain any required degree of accuracy, the soil pro¯le can be discretized into any

H. Zhang & Y.-G. Zhao

1950003-8



Table 1. Soil data for a sample soil pro¯le.

Layer no.

Thickness

Hm (m)

Shear wave

velocity Vm (m/s)

Density

�m (KN/m3)

1 8 130 18.62
2 24 180 18.62

3 6 260 18.62

Table 2. Fundamental mode shape results for a sample soil pro¯le.

Depth (m)

Rayleigh

procedure

Results

of step 2

Results

of step 3

Relative

error (%)

0 1.000 1.000 1.000 0.00

1 0.998 1.000 1.000 0.20

2 0.993 0.997 0.996 0.32

3 0.983 0.990 0.989 0.58
4 0.970 0.980 0.978 0.77

5 0.954 0.967 0.963 0.90

6 0.933 0.950 0.944 1.18

7 0.909 0.930 0.922 1.41
8 0.882 0.907 0.896 1.59

9 0.866 0.894 0.881 1.71

10 0.848 0.879 0.864 1.86
11 0.828 0.862 0.845 2.07

12 0.807 0.844 0.825 2.19

13 0.784 0.824 0.803 2.37

14 0.760 0.803 0.779 2.47
15 0.734 0.780 0.754 2.66

16 0.707 0.756 0.727 2.77

17 0.678 0.731 0.698 2.98

18 0.648 0.704 0.668 3.15
19 0.617 0.676 0.637 3.26

20 0.584 0.647 0.605 3.51

21 0.550 0.617 0.571 3.75
22 0.515 0.586 0.536 3.98

23 0.479 0.553 0.499 4.22

24 0.442 0.520 0.462 4.48

25 0.405 0.485 0.423 4.52
26 0.366 0.450 0.384 4.86

27 0.327 0.414 0.343 5.02

28 0.287 0.377 0.302 5.30

29 0.246 0.340 0.260 5.77
30 0.205 0.302 0.218 6.10

31 0.164 0.263 0.174 6.16

32 0.122 0.224 0.130 6.80
33 0.102 0.205 0.109 6.86

34 0.082 0.186 0.088 6.71

35 0.061 0.166 0.066 8.03

36 0.041 0.147 0.044 7.56
37 0.020 0.127 0.022 10.50

38 0.000 0.108 0.000 0.00
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number of layers; in this example, the soil pro¯le is discretized into 1�m deep

layers.

. Step 3: The values of the fundamental mode shape obtained from Step 2 are

modi¯ed using Eq. (15). The obtained ¯nal fundamental mode shapes are pre-

sented in Table 2.

The calculations that are performed in each step of the proposed procedure can be

easily implemented. To verify the accuracy of the proposed procedure, the funda-

mental mode shapes were also calculated using the exact Rayleigh procedure and

were further compared to estimate the relative error. Table 2 presents the Rayleigh

procedure results and relative errors, which indicate that the fundamental mode

shapes obtained using the proposed method are remarkably accurate and depict a

maximum error of only 10.5%. Figure 5 depicts a comparison of the fundamental

mode shapes with the Rayleigh procedure results, which further con¯rms the close

agreement between the two methods. The proposed method is further veri¯ed in the

next section.

5. Numerical Examples and Discussion

5.1. Designed soil pro¯le

To validate the proposed method, the uniform 60.98-m soil pro¯le with a shear

wave velocity of 304.8m/s from Sec. 4.1 of Hadjian [2002] is used. The fundamental

mode shape of the soil pro¯le, discretized by a number of equal-height layers, is

estimated by the proposed method; the obtained mode shapes together with the

correct mode shapes are plotted in Fig. 6. The ¯gure indicates that the results of the

fundamental mode shape by the proposed method agree very well with the correct

values. In addition, the comparison of the mode shapes having di®erent layer

discretizations demonstrates that the accuracy of the proposed method increases

with the number of layers, but the variation is not signi¯cant. Thus, the proposed

Fig. 5. Comparison of the fundamental mode shapes estimated using the proposed method with Rayleigh

procedure results.
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method is stable with respect to the numbers of layers. Moreover, the mode shapes

obtained by the proposed method are compared with those obtained by the Hadjian

method (Fig. 5 of the [Hadjian, 2002]); no obvious di®erences are observed between

the results that are obtained using both the methods. Further accuracy investi-

gation of the proposed method using actual soil pro¯les is described in the following

section.

5.2. Actual soil pro¯les

Four actual soil pro¯les, Site-1, Site-2, Site-3, and Site-4 (Table 3), were selected

from the strong-motion seismograph networks [K-NET, KIK-net] and used to in-

vestigate the accuracy of the proposed method. The fundamental mode shapes were

estimated using the proposed method, the Hadjian method [Hadjian, 2002], and the

exact Rayleigh procedure [Dobry et al., 1976] by discretizing the soil pro¯les into

several 1-m soil layers. The results are shown in Figs. 7(a) and 7(b). The horizontal

axis represents the estimated values of the fundamental mode shapes, and the

shape at the ground surface is normalized to one, whereas the vertical coordinate

Fig. 6. Comparison of the fundamental mode shapes for several discretizations of a uniform soil pro¯le.

Table 3. Soil data for the four representative soil pro¯les.

Site no. Layer no. Thickness Hi (m) Shear wave velocity Vi (m/s) Density �i (KN/m3)

Site-1 1 4 98 15.68
2 2 98 18.62

3 6 216 18.62

Site-2 1 22 170 18.62

2 6 250 18.62
3 22 300 18.62

Site-3 1 6 136 15.68

2 30 267 18.62
3 16 292 18.62

Site-4 1 20 110 15.68

2 170 380 18.62

Fundamental Mode Shape of Layered Soil Pro¯les
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represents the depth. The results produced using the proposed method are observed

to be in close agreement with those obtained using the Rayleigh procedure. In

addition, comparison of the mode shapes by the proposed and Hadjian methods

demonstrates that the accuracies of the results produced by the two methods are

nearly identical.

To further compare the fundamental mode shape accuracies of the proposed and

Hadjian methods, an additional 63 representative soil pro¯les were selected from the

strong-motion seismograph networks [K-NET, KIK-net]. The shear wave velocity

pro¯le of each site is presented in Fig. 8. The unit weights are not given for some

sites; instead, these were empirically determined according to Yuki et al. [2003] as

15.68KN/m3 for clay and 18.62KN/m3 for sand. The fundamental periods of the

selected soil pro¯les were calculated using the SHAKE program [Idriss and Sun,

1992], and the results varied widely from 0.05 to 1.72 s.

(a) (b)

(c) (d)

Fig. 7. Fundamental mode shapes of the four representative soil pro¯les estimated using di®erent
methods. (a) Site-1, (b) Site-2, (c) Site-3, and (d) Site-4.
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Fig. 8. Shear wave velocity pro¯les used for analyses.
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Fig. 8. (Continued )
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As a measure of the estimation accuracy of the fundamental mode shape, the

parameter r can be de¯ned as follows:

r ¼
Xn
i¼1

ðXEV
1 ðziÞ �XEX

1 ðziÞÞ2
XEX

1 ðziÞ
; ð17Þ

where XEV
1 ðziÞ and XEX

1 ðziÞ represent the evaluated and exact values of the fun-

damental mode shape at the ith soil interface, respectively. Equation (17) depicts

that values of r that are close to zero will correspond to the more accurately calcu-

lated fundamental mode shape results.

The values of r obtained by applying the proposed and Hadjian methods to the 67

soil pro¯les are shown in Fig. 9. In the ¯gure, the horizontal coordinate represents the

total thickness of the soil pro¯le, whereas the vertical coordinate represents the

Fig. 9. Values of r for 67 soil pro¯les.

Fig. 10. Comparisons of the participation factors calculated using the proposed method and eigenvalue

analysis.
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calculated value of r. For several soil pro¯les with small total thicknesses, the pro-

posed method produces values of r that are slightly higher than those produced using

the Hadjian method. However, for several soil pro¯les with large total thicknesses,

the proposed method produces values of r that are lower than those produced by the

Hadjian method. Generally, no obvious di®erences are observed between the values

of r calculated using the two methods, which indicates that the accuracies of the two

methods are almost identical.

The participation factors corresponding to the ¯rst mode were further estimated

for the 67 soil pro¯les using Eq. (16). Figure 10 compares the obtained participation

factors with those estimated by performing eigenvalue analysis, which involves dis-

cretization of the continuous soil pro¯le into a lumped-parameter MDOF model. It is

seen that the modal participation factors obtained using Eq. (16) are remarkably

accurate, with 97% of the estimated values within 15% of the results obtained using

eigenvalue analysis.

6. Conclusions

In this study, a simple method was developed for calculating the fundamental mode

shape of layered soil pro¯les. On the basis of our analysis and discussion, the fol-

lowing ¯ndings and conclusions can be presented:

(1) A new equation for estimating the natural frequencies and mode shapes of lay-

ered soil pro¯les was derived.

(2) By using the derived equation in conjunction with a simple method for the

fundamental period, a simple approach was developed to estimate the funda-

mental mode shape of layered soil pro¯les. The proposed approach can be con-

veniently implemented using arithmetic operations.

(3) The accuracy of the proposed approach was investigated using a large sample of

representative layered soil pro¯les. The results produced by the proposed method

were observed to agree closely with the actual results.

(4) The proposed method was compared with the Hadjian method; the two methods

were observed to exhibit approximately identical accuracy in estimating the

fundamental mode shape; however, the implementation of the proposed method

is much more convenient as compared to that of the Hadjian method.
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