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The fundamental mode shape of layered soil profiles is a key site response parameter, it has been
adopted into the Japanese seismic code to represent the shape of the soil displacement response
along the vertical direction. In this study, a simple approach for estimating the fundamental
mode shape of layered soil profiles is developed. The proposed approach can directly model the
fundamental mode shape and can be conveniently implemented using arithmetic operations,
thus making it suitable to be used by the engineers. The assessments of the proposed approach
using a series of layered soil profiles demonstrate that it can produce results in close agreement
with the actual results.
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1. Introduction

The natural frequencies, mode shapes, and participation factors are the basic in-
formation that are important to perform the site response analysis of layered soil
profiles [Zhao, 1997; Sarma, 1994]. Given that the site response is generally domi-
nated by the first mode, it is often approximated by the response of the first mode in
terms of the fundamental period and mode shape [Francesca et al., 2010; Tsang et al.,
2006; Lam et al., 2001; Kenji et al., 2001]. Under the Japanese seismic code, the
non-linear site effects are estimated using the fundamental mode shape to represent
the shape of the soil displacement response along the vertical (height) direction
[Mistumasa et al., 2003; MLIT, 2000]. In principle, the fundamental period and mode
shape can be exactly obtained by solving the equilibrium equations of free vibration,
or by performing an accurate estimation via eigenvalue analysis by discretizing the
continuous soil profile into a lumped-parameter multi-degree-of-freedom (MDOF)
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model. However, the implementation of such methods is generally quite cumbersome
in practice. A primary example of a situation in which a simple approach for de-
termining the fundamental mode shape of layered soil profiles is desirable, involves
the determination of the “base”, e.g. the extent of the crust to be included in the
model of a bottomless soil profile, before calculating the response. In such situations,
understanding the mode shape of the soil model can be useful [Hadjian, 2002];
however, this modeling decision is usually performed in an ad-hoc fashion, and
accurate computation is generally not desirable at this stage.

Although numerous studies have focused on simple approaches for obtaining the
fundamental periods of layered soil profiles [Hadjian, 2002; Dobry et al., 1976;
Vijayendra et al., 2015], there have been few studies on developing approaches for
obtaining the fundamental mode shape. Dobry et al. [1976] concluded that the
Simplified Version of the Rayleigh procedure can provide accurate solutions for both
the fundamental period and mode shape. But, the simplified Rayleigh procedure is
iterative [Hadjian, 2002]. Subsequently, Hadjian [2002] developed a direct approach
to calculate the fundamental mode shape. However, this method is not readily ap-
plicable in practicing engineering because the implementation of the Hadjian method
requires repeated exponential calculation.

In this paper, a simpler and accurate method for estimating the fundamental mode
shape of layered soil profiles is proposed. The proposed approach can directly model the
fundamental mode shape and can be conveniently implemented using arithmetic
operations. The remainder of the paper is organized as follows. In Sec. 2, the simplest
current method for estimating the fundamental mode shape, i.e. the Hadjian method
[Hadjian, 2002], is briefly reviewed. In Sec. 3, a new equation for the analysis of the
natural frequencies and mode shapes of layered soil profiles is derived. In Sec. 4, a new
approach based on the use of this equation in conjunction with a simple equation for
the fundamental period is developed to estimate the fundamental mode shape. In
Sec. 5, the accuracy of the proposed procedure is assessed and compared with that of
the Hadjian method using a series of layered soil profiles. It is observed that both
methods provide considerably good accuracy while estimating the fundamental mode
shape; however, the implementation of the proposed method is much more convenient
than that of the Hadjian method. In Sec. 6, the conclusions are presented.

2. The Hadjian Method

Several simple methods for the estimation of the fundamental mode shape of layered
soil profiles have been developed [Hadjian, 2002; Dobry et al., 1976]. Among these
methods, the method proposed by Hadjian [2002] is currently considered to be the
simplest and can be implemented using spreadsheets. This section briefly reviews
Hadjian’s method.

The Hadjian method estimates the fundamental mode shape using the results of
the fundamental period. Thus, before calculating the fundamental mode shape, one
should estimate the fundamental period. The Hadjian method as an enhancement to
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Fig. 1. Estimation of the fundamental period of a multilayer soil profile on bedrock using the Madera
procedure.

the Madera procedure [Madera, 1970] calculates the fundamental period based on
the solution of the fundamental period of a two-layer soil profile on bedrock. Figure 1
illustrates the calculation process that is followed in the Hadjian method. The so-
lution starts by replacing the top two layers of an n-layer soil profile by an equivalent
single layer using the two-layer system solution. This first equivalent “single” layer
and the third layer of the m-layer profile are then treated as a second two-layer
system, and, in turn, replaced by an equivalent single layer. By application of this
procedure successively to the remaining lower layers of the soil profile, the solution of
the fundamental period of the total soil profile is obtained. The Hadjian method uses
the two-layer system solution successively a total of n — 1 times. During the appli-
cation of this procedure, the fundamental period of the soil layers that are decoupled
from the ground surface to each soil interface, T}_;, can also be obtained. Here, the
subscript 1 — i refers to the layers 1 through 4.

The two-layer system solution was originally presented by Madera [1970] in the
form of charts; subsequently, this solution was replaced by more convenient
approximate equations by Hadjian [2002], which are as follows:

%: \/7: [0.75+ <%)2<1 +2g;z;>], H,/H, > 1, (2)
N O R
where
a:471.8g;z;, 5102(22;)2'

Here, Hy, p1, and T} (= 4H,/V}) are the height, density, and decoupled fundamental
period of the top layer, respectively; Hy, py, and T, (= 4H,/V,) are the height,
density, and decoupled fundamental period of the bottom layer, respectively. Fur-
thermore, V; and V, are the shear wave velocities of the layers, and T is the fun-
damental period of the two-layer soil profile on bedrock.
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Further, using the results of the fundamental period, the fundamental mode
shape, X;(z), can be estimated as follows:

where X (z;) represents the value of the fundamental mode shape at the ith soil
interface, T)_; represents the decoupled fundamental period of the soil layers from
the first interface (the ground surface) to the ith interface, and T)_,, represents the
fundamental period of the overall soil profile. As mentioned above, all values of T} _;
(i=1—mn) can be obtained, while estimating the fundamental period using the
Hadjian method.

After estimating the fundamental mode shape, the corresponding participation
factor, p, can be obtained by

_ X{{mz}

P XTI “

where {m;} is the vector of the masses lumped at the layer interfaces, and [M] is the
associated diagonal mass matrix.

The Hadjian method can directly model the fundamental mode shape and can
be implemented using a spreadsheet [Dihoru et al., 2016; Nawras et al., 2016;
Motazedian et al., 2011]. However, an exponential calculation (Eq. (3)) needs to be
repeatedly applied for a multilayer soil profile, which makes the Hadjian method
difficult to apply. In the following section, a simpler but still accurate method for
estimating the fundamental mode shape of layered soil profiles is described.

3. An Equation for the Natural Frequencies and Mode Shapes
of Layered Soil Profiles

In this section, an equation for the estimation of natural frequencies and mode shapes
is derived to produce a simple method for the estimation of the fundamental mode
shape of layered soil profiles. To derive the equation, a multilayer soil profile on rigid
bedrock, which is assumed to vibrate freely in the natural mode, is considered as
depicted in Fig. 2.

To establish an equilibrium between the inertial and elastic forces at the ith
interface in this model, the inertial force of the soil layers above the ith interface,
F(z;), must be equal to the elastic force, T'(z;), acting on this interface:

F(z) =T(z), (6)

where z; is the depth of the ith interface.
The inertial force of the soil layers above the ith interface can be calculated as
z3 2

= *u : 0u & %u
F(Zz'):/z —P(Z)Wdz‘i‘/z —P(Z)Wdz'i‘"""/z —P(Z)Wd«% (7)

i—
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Fig. 2. A multilayer soil profile on a rigid bedrock.

where u is the displacement of the soil layers that can be given by
u(z,t) = X(2) sin(wt + ). (8)

Here, w is the natural frequency of the layered soil profile, and X is the corresponding
mode shape.
By substituting Eq. (8) into Eq. (7), F(2;) can be expressed as

F(z) = (/Zz p(2)w’ X (2)dz + /‘Z3 p(2)* X (2)dz + -+ /ZT p(z)w2X(z)dz>

Zi—

x sin(wt + ¢). (9)

For simplicity, the mode shape, X, is assumed to vary linearly with the depth within
each soil layer; Eq. (9) can then be simplified as follows:

i—1

F(z) = 5 sint +9) 3 py(X(2) + X (1)) H, (10)

J=1
Similarly, the elastic force acting at the ith interface can be simply calculated as

T(z) = sin(wt + @) j(X(Zi) = X(zi41)), (11)

(2

where G; is the shear modulus of the ith soil layer, G; = p;V?, and V; is the shear
wave velocity.
Substituting Eqgs. (10) and (11) into Eq. (6) gives

L (X(e) ~ X(z) = 56 S (K (2) + X(z0)) . (12)
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From Eq. (12), the following are obtained:

X(z41) = X(z) — HGK : (13a)
i—1
Ky =5 Y py(X(z) + X () H, (13b)

Because both the fundamental frequency, w, and mode shape, X, are unknown,
Eq. (13) has no direct solution. However, w and X can be obtained using the
following steps:

(1) If a preliminary value is assumed for w, all the values of the fundamental mode
shape, X(z;), can be recursively calculated by setting the value at the surface to
be one, i.e. by setting X(z;) = 1.

(2) It is well known that the value of the fundamental mode shape at the base layer,
X(z,), equals zero for natural vibration. Thus, if X(z,) is zero, the initial as-
sumption of w in Step (1) represents the accurate natural frequency of the
vibration; otherwise, the assumed value of w is adjusted.

(3) Repeat Steps (1) and (2) until the resulting value of X(z, ) becomes zero. At this
point, the natural frequencies and mode shapes can be obtained.

To illustrate how to adjust the assumed value of w according to the calculated value
of X(z,), we perform a calculation example using Eq. (13) and a sample selected from
the strong-motion seismograph networks [K-NET, KIK-net]. The shear wave ve-
locity profile of the sample site is shown in Fig. 3. The relationship between the
assumed frequency, w, and the calculated value of the fundamental mode at the base,
X(z,), is shown in Fig. 4. It is observed that the positive estimated values of X(z,)

0 T
5 _|
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350 -
| | |
0 100 200 300

Shear wave velocity V (m/s)

Fig. 3. Shear wave velocity of a soil profile.
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Fig. 4. Estimated value of the fundamental mode shape at the base as a function of frequency.

correspond to values of w smaller than the true frequency for odd modes, with the
converse applies for even modes. Similarly, if the estimated value of X(z,) is nega-
tive, the assumed w will be larger/smaller than the true frequency for odd/even
modes. On the basis of this relation, the natural periods and mode shapes can be
gradually determined.

In principle, this method can provide any natural frequency and mode shape with
a desired degree of accuracy. Given that the values of the mode shape between two
adjacent soil interfaces are assumed to vary linearly in the derivation of Egs. (10) and
(11), the accuracy of the results obtained using Eq. (13) depends only on the soil
layer height to be discretized.

4. Method for Obtaining the Fundamental Mode Shape
4.1. Estimation of the fundamental mode shape

Although the method developed in Sec. 3 can produce any natural frequency
and mode shape with a desired degree of accuracy, the requirement of repeated
assumptions and judgments increases the difficulty of applying this method in
practical engineering. Note that if a value of the fundamental frequency is given,
Eq. (13) can directly produce the fundamental mode shape. In addition, many simple
methods have been developed for the estimation of the fundamental period [Dobry
et al., 1976]. Thus, using Eq. (13) in conjunction with a simple method for the
fundamental period should allow for the simple calculation of the fundamental mode
shape. In theory, the more accurate the selected simple method for the fundamental
period, the more accurate the obtained fundamental mode shape should be. However,
the analysis of a variety of simple methods for estimating the fundamental period
reveals that the accuracy of the fundamental mode shape given by Eq. (13) is not
sensitive to that of the fundamental period. Therefore, this study utilizes the simplest
and most commonly used method to calculate the fundamental period

4H?

T=c—e—-.
> im1 ViH;

(14)
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Thus, the fundamental mode shape of layered soil profiles can be estimated as
follows:

(1) Estimate the fundamental period using Eq. (14).

(2) Substitute the obtained fundamental period into Eq. (13) to determine the
fundamental mode shape.

(3) Given that the fundamental period estimated using Eq. (14) is not precise, any
error in the obtained fundamental period will be transferred to the fundamental
mode shape. To reduce this error, the obtained values of the fundamental mode
shape should be modified. As the value of the fundamental mode shape at the
base layer, X;(z,), theoretically equals zero for natural vibration, the modifi-
cation of the fundamental mode shape values will proceed as follows:

X1'(z) = Xi(2) — Xu(20), (15)

where X1'(z;) is the modified value of the fundamental mode shape at the ith soil
interface.

The proposed procedure contains three simple equations, i.e. Egs. (13)—(15), each of
which comprises only arithmetic operations, which makes it easy to estimate the
result. By comparing with the Hadjian method introduced in Sec. 2 (i.e. Egs. (1)—(4)),
the simplicity of the proposed method can be observed.

After identifying the fundamental mode shape, the corresponding participation
factor can be estimated based on Eq. (5) as used by Hadjian [2002]. Herein, by further
substituting the mass lumped at the layer interface, m; = 0.5(p,_1H;_1+ p;H;),
into Eq. (5), a direct expression for the participation factor corresponding to the first
mode, p;, can be obtained as

X (z)pHi + Y15 (o Hioy + piH) X' (1)
(X7(20)) 01 Hy + 30155 (pio1 Hioy + piH;) (X7 (2:))?
Although Eq. (16) seems complicated at first glance, it also contains only the

brL = (16)

arithmetic operations.

4.2. Application of the proposed method

This subsection presents a calculation example in which the proposed procedure is
applied to a multilayer soil profile described in Sec. 3 for the shear wave velocity that
is depicted in Fig. 3. The soil data for each layer are listed in Table 1. The calculation
steps are detailed below:

e Step 1: The fundamental period is calculated by Eq. (14), resulting in a funda-
mental period of 0.8347 s.

e Step 2: By substituting the fundamental period into Eq. (13), the values of the
fundamental mode shape can be recursively obtained by setting the value at the
surface to one, i.e. X;(z;) = 1. The obtained results are presented in Table 2. To
attain any required degree of accuracy, the soil profile can be discretized into any
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Table 1. Soil data for a sample soil profile.

Thickness Shear wave Density
Layer no. H,, (m) velocity V,, (m/s)  p, (KN/m?)

1 8 130 18.62
2 24 180 18.62
3 6 260 18.62

Table 2. Fundamental mode shape results for a sample soil profile.

Rayleigh Results Results Relative
Depth (m) procedure of step 2 of step 3 error (%)
0 1.000 1.000 1.000 0.00
1 0.998 1.000 1.000 0.20
2 0.993 0.997 0.996 0.32
3 0.983 0.990 0.989 0.58
4 0.970 0.980 0.978 0.77
5 0.954 0.967 0.963 0.90
6 0.933 0.950 0.944 1.18
7 0.909 0.930 0.922 1.41
8 0.882 0.907 0.896 1.59
9 0.866 0.894 0.881 1.71
10 0.848 0.879 0.864 1.86
11 0.828 0.862 0.845 2.07
12 0.807 0.844 0.825 2.19
13 0.784 0.824 0.803 2.37
14 0.760 0.803 0.779 2.47
15 0.734 0.780 0.754 2.66
16 0.707 0.756 0.727 2.77
17 0.678 0.731 0.698 2.98
18 0.648 0.704 0.668 3.15
19 0.617 0.676 0.637 3.26
20 0.584 0.647 0.605 3.51
21 0.550 0.617 0.571 3.75
22 0.515 0.586 0.536 3.98
23 0.479 0.553 0.499 4.22
24 0.442 0.520 0.462 4.48
25 0.405 0.485 0.423 4.52
26 0.366 0.450 0.384 4.86
27 0.327 0.414 0.343 5.02
28 0.287 0.377 0.302 5.30
29 0.246 0.340 0.260 5.77
30 0.205 0.302 0.218 6.10
31 0.164 0.263 0.174 6.16
32 0.122 0.224 0.130 6.80
33 0.102 0.205 0.109 6.86
34 0.082 0.186 0.088 6.71
35 0.061 0.166 0.066 8.03
36 0.041 0.147 0.044 7.56
37 0.020 0.127 0.022 10.50
38 0.000 0.108 0.000 0.00
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Fig. 5. Comparison of the fundamental mode shapes estimated using the proposed method with Rayleigh
procedure results.

number of layers; in this example, the soil profile is discretized into 1 — m deep
layers.

e Step 3: The values of the fundamental mode shape obtained from Step 2 are
modified using Eq. (15). The obtained final fundamental mode shapes are pre-
sented in Table 2.

The calculations that are performed in each step of the proposed procedure can be
easily implemented. To verify the accuracy of the proposed procedure, the funda-
mental mode shapes were also calculated using the exact Rayleigh procedure and
were further compared to estimate the relative error. Table 2 presents the Rayleigh
procedure results and relative errors, which indicate that the fundamental mode
shapes obtained using the proposed method are remarkably accurate and depict a
maximum error of only 10.5%. Figure 5 depicts a comparison of the fundamental
mode shapes with the Rayleigh procedure results, which further confirms the close
agreement between the two methods. The proposed method is further verified in the
next section.

5. Numerical Examples and Discussion
5.1. Designed soil profile

To validate the proposed method, the uniform 60.98-m soil profile with a shear
wave velocity of 304.8 m/s from Sec. 4.1 of Hadjian [2002] is used. The fundamental
mode shape of the soil profile, discretized by a number of equal-height layers, is
estimated by the proposed method; the obtained mode shapes together with the
correct mode shapes are plotted in Fig. 6. The figure indicates that the results of the
fundamental mode shape by the proposed method agree very well with the correct
values. In addition, the comparison of the mode shapes having different layer
discretizations demonstrates that the accuracy of the proposed method increases
with the number of layers, but the variation is not significant. Thus, the proposed
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Fig. 6. Comparison of the fundamental mode shapes for several discretizations of a uniform soil profile.

method is stable with respect to the numbers of layers. Moreover, the mode shapes
obtained by the proposed method are compared with those obtained by the Hadjian
method (Fig. 5 of the [Hadjian, 2002]); no obvious differences are observed between
the results that are obtained using both the methods. Further accuracy investi-
gation of the proposed method using actual soil profiles is described in the following
section.

5.2. Actual soil profiles

Four actual soil profiles, Site-1, Site-2, Site-3, and Site-4 (Table 3), were selected
from the strong-motion seismograph networks [K-NET, KIK-net] and used to in-
vestigate the accuracy of the proposed method. The fundamental mode shapes were
estimated using the proposed method, the Hadjian method [Hadjian, 2002], and the
exact Rayleigh procedure [Dobry et al., 1976] by discretizing the soil profiles into
several 1-m soil layers. The results are shown in Figs. 7(a) and 7(b). The horizontal
axis represents the estimated values of the fundamental mode shapes, and the
shape at the ground surface is normalized to one, whereas the vertical coordinate

Table 3. Soil data for the four representative soil profiles.

Site no.  Layer no.  Thickness H; (m) Shear wave velocity V; (m/s)  Density p; (KN/m?)

Site-1 1 4 98 15.68
2 2 98 18.62
3 6 216 18.62
Site-2 1 22 170 18.62
2 6 250 18.62
3 22 300 18.62
Site-3 1 6 136 15.68
2 30 267 18.62
3 16 292 18.62
Site-4 1 20 110 15.68
2 170 380 18.62
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Fig. 7. Fundamental mode shapes of the four representative soil profiles estimated using different
methods. (a) Site-1, (b) Site-2, (c) Site-3, and (d) Site-4.

represents the depth. The results produced using the proposed method are observed
to be in close agreement with those obtained using the Rayleigh procedure. In
addition, comparison of the mode shapes by the proposed and Hadjian methods
demonstrates that the accuracies of the results produced by the two methods are
nearly identical.

To further compare the fundamental mode shape accuracies of the proposed and
Hadjian methods, an additional 63 representative soil profiles were selected from the
strong-motion seismograph networks [K-NET, KIK-net|. The shear wave velocity
profile of each site is presented in Fig. 8. The unit weights are not given for some
sites; instead, these were empirically determined according to Yuki et al. [2003] as
15.68 KN/m? for clay and 18.62 KN/m? for sand. The fundamental periods of the
selected soil profiles were calculated using the SHAKE program [Idriss and Sun,
1992], and the results varied widely from 0.05 to 1.72s.
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Fig. 8. Shear wave velocity profiles used for analyses.
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Fig. 9. Values of r for 67 soil profiles.

As a measure of the estimation accuracy of the fundamental mode shape, the
parameter 7 can be defined as follows:

n XEV 2; _XIIEX % 2
= 3 O X))

(17)
i—1
where XV (z;) and XTX(2,) represent the evaluated and exact values of the fun-
damental mode shape at the ith soil interface, respectively. Equation (17) depicts
that values of r that are close to zero will correspond to the more accurately calcu-
lated fundamental mode shape results.
The values of 7 obtained by applying the proposed and Hadjian methods to the 67
soil profiles are shown in Fig. 9. In the figure, the horizontal coordinate represents the
total thickness of the soil profile, whereas the vertical coordinate represents the
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Fig. 10. Comparisons of the participation factors calculated using the proposed method and eigenvalue
analysis.
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calculated value of r. For several soil profiles with small total thicknesses, the pro-
posed method produces values of r that are slightly higher than those produced using
the Hadjian method. However, for several soil profiles with large total thicknesses,
the proposed method produces values of r that are lower than those produced by the
Hadjian method. Generally, no obvious differences are observed between the values
of r calculated using the two methods, which indicates that the accuracies of the two
methods are almost identical.

The participation factors corresponding to the first mode were further estimated
for the 67 soil profiles using Eq. (16). Figure 10 compares the obtained participation
factors with those estimated by performing eigenvalue analysis, which involves dis-
cretization of the continuous soil profile into a lumped-parameter MDOF model. It is
seen that the modal participation factors obtained using Eq. (16) are remarkably
accurate, with 97% of the estimated values within 15% of the results obtained using
eigenvalue analysis.

6. Conclusions

In this study, a simple method was developed for calculating the fundamental mode
shape of layered soil profiles. On the basis of our analysis and discussion, the fol-
lowing findings and conclusions can be presented:

(1) A new equation for estimating the natural frequencies and mode shapes of lay-
ered soil profiles was derived.

(2) By using the derived equation in conjunction with a simple method for the
fundamental period, a simple approach was developed to estimate the funda-
mental mode shape of layered soil profiles. The proposed approach can be con-
veniently implemented using arithmetic operations.

(3) The accuracy of the proposed approach was investigated using a large sample of
representative layered soil profiles. The results produced by the proposed method
were observed to agree closely with the actual results.

(4) The proposed method was compared with the Hadjian method; the two methods
were observed to exhibit approximately identical accuracy in estimating the
fundamental mode shape; however, the implementation of the proposed method
is much more convenient as compared to that of the Hadjian method.
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